个体与集成
集成学习(ensemble learning):通过构建并结合多个学习器来完成学习任务,也叫做多分类器系统(multi-classifier system)和基于委员会的学习(committee-based learning)。其一般结构是先产生一组个体学习器(individual learner),再用某种策略将它们结合起来
同质(homogeneous)集成:集成中只包含同种类型的个体学习器,这些个体学习器称为基学习器(base learner),相应的学习算法称为基学习算法(base learning algorithm)
异质(heterogenous)集成:集成中个体学习器由不同类型的学习算法生成,这是不再有基学习算法,个体学习器一般称为组件学习器(component learner)或直接称为个体学习器
根据个体学习器的生成方式,目前的集成学习方法大致可以分为两大类:个体学习器存在强依赖关系、必须串行生成的序列化方法;个体学习器间不存在强依赖关系、可同时生成的串行化方法。前者代表是Boosting,后者代表是Bagging和随机森林(random forest)
Boosting
一族可将弱学习器提升为强学习器的算法。这族算法的工作机制是先从初始训练集中训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的样本在后续受到更多关注,然后基于调整后的样本分布来训练下一个基学习器,直至基学习器数目达到事先指定的值。此外,从偏差-方差角度