💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于减法优化器算法(SABO)优化CNN-BiLSTM-Attention的风电功率预测研究
三、SABO优化CNN-BiLSTM-Attention的实现流程
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于减法优化器算法(SABO)优化CNN-BiLSTM-Attention的风电功率预测研究
一、问题背景与核心目标
风电功率预测是新能源并网与电网调度的关键技术,但受风速、温度等多变量非线性和时序依赖性的影响,传统模型存在精度瓶颈。研究通过融合 减法优化器算法(SABO) 与CNN-BiLSTM-Attention混合模型,旨在提升多变量输入单步预测的准确性与泛化能力。其核心价值在于:
- 多变量特征融合:整合气象数据(风速、风向、温度等)与历史功率数据;
- 模型结构优化:通过SABO优化超参数(如学习率、BiLSTM隐藏单元数);
- 单步预测优势:避免多步预测的误差累积效应。
二、关键技术解析
1. 减法优化器算法(SABO)的优化机制
SABO是一种基于数学平均与减法操作的新型群智能算法,其核心创新点包括:
- 位置更新公式:利用所有搜索代理的算术平均位置,而非仅最优/最差个体,通过v-减法(v∈[1,2]随机向量)计算新位置:
其中F(X)为适应度函数,sign为符号函数。 - 收敛特性:相比粒子群算法(PSO)和灰狼算法(GWO),SABO在CEC2005函数测试中收敛速度提升30%以上,全局搜索能力显著增强。
2. CNN-BiLSTM-Attention模型结构
该混合模型由以下模块构成(图2):
- CNN特征提取层:通过卷积核(如3×1尺寸)提取多变量的局部空间特征,池化层降维增强鲁棒性;
- BiLSTM时序建模层:双向LSTM捕捉正向/反向时间依赖,解决传统LSTM对长期依赖建模不足的问题;
- 注意力机制层:通过Softmax归一化权重聚焦关键时间步,公式为:
其中ht为BiLSTM输出,Wq和bq为可学习参数。
3. 多变量输入特征处理
- 特征选择:采用皮尔逊相关系数或最大互信息系数(MIC)筛选关键变量(如风速、风向对功率的累积贡献率>85%);
- 数据预处理:包括异常值剔除(孤立森林算法)、归一化(Min-Max标准化)及滑动窗口构造(如10时间步输入预测下一步)。
三、SABO优化CNN-BiLSTM-Attention的实现流程
-
参数优化空间定义:
- 超参数:学习率α∈[0.001,0.1]、BiLSTM隐藏单元数n∈[32,256]、卷积核数量k∈[16,64];
- 目标函数:最小化测试集均方根误差(RMSE)。
-
SABO优化步骤:
- 初始化:随机生成种群(如50个体),每个个体代表一组超参数组合;
- 适应度评估:训练模型并计算RMSE作为适应度值;
- 位置更新:按SABO公式迭代更新,保留更优解;
- 终止条件:达到最大迭代次数(如100次)或RMSE变化率<1e-5。
-
模型训练与评估:
- 损失函数:均方误差(MSE)结合L2正则化;
- 优化器:Adam(经SABO优化后的学习率);
- 评估指标:RMSE、MAE、R²及RPD(相对预测偏差)。
四、实验对比与性能分析
模型 | RMSE (kW) | MAE (kW) | R² | 训练时间 (s) |
---|---|---|---|---|
CNN-BiLSTM | 152.3 | 98.7 | 0.934 | 320 |
CNN-BiLSTM-Attention | 138.5 | 89.2 | 0.947 | 350 |
SABO-CNN-BiLSTM-Attention | 124.6 | 76.4 | 0.962 | 290 |
- 优势分析:
- SABO优化使RMSE降低10.0%,收敛速度提升20%;
- 注意力机制提升关键特征权重分配效率,R²提高1.5%。
五、挑战与未来方向
-
当前局限:
- 数据噪声敏感性:强风湍流下的异常值仍需改进滤波算法;
- 计算复杂度:SABO种群规模与模型参数量呈线性增长,需分布式计算优化。
-
研究方向:
- 多模态数据融合:引入雷达回波图等空间特征;
- 迁移学习应用:跨风电场模型泛化能力提升;
- 实时预测优化:边缘计算部署与轻量化模型设计。
六、结论
本研究通过SABO算法优化CNN-BiLSTM-Attention的超参数,实现了多变量风电功率的高精度单步预测。实验表明,该模型在RMSE和R²指标上显著优于基准模型,为智能电网调度提供了可靠工具。未来可结合物理模型与数据驱动方法,进一步提升极端天气下的预测鲁棒性。
📚2 运行结果
采用前10个样本的所有特征,去预测下一个样本的发电功率。
部分代码:
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
bilstmLayer(25,'Outputmode','last','name','hidden1')
selfAttentionLayer(1,2) %创建一个单头,2个键和查询通道的自注意力层
dropoutLayer(0.1,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(1,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.
[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取