脉冲神经网络学习(2)

树突为什么能进行非线性运算

  1. 离子通道和受体的分布: 树突上分布着大量的离子通道和神经递质受体,这些分布不是均匀的,而是高度特化的。这些通道和受体对不同类型的信号有不同的响应,导致树突对输入信号的处理呈现非线性特征。

  2. 信号的局部处理: 树突棘(树突表面的小突起)可以对突触信号进行局部处理。每个树突棘都可以被看作是一个独立的信号处理单元,它们能够在不影响树突的其他部分的情况下对信号进行响应和加工。

  3. 电学特性: 树突的电学特性也促进了非线性运算。例如,信号在树突中的传播会受到长度常数和时间常数的影响,这些因素决定了信号衰减的速度和方式,从而影响信号的整体处理。

  4. 信号的整合和放大: 树突能够整合来自不同突触的信号,并且在某些情况下可以放大这些信号。这种整合和放大过程是非线性的,意味着输出信号并不总是与输入信号成简单的比例关系。

  5. 背向传导作用电位: 在某些神经元中,动作电位不仅在轴突中生成和传播,也可以从轴突反向传导至树突。这种背向传导可以影响树突内的信号处理,增加计算的复杂性。

  6. 突触可塑性: 树突上的突触可塑性(如长时程增强和长时程抑制)也是一种非线性机制,它根据神经活动的历史改变突触的强度。

Hines Matrix

Hines矩阵,也称为分支电缆矩阵,是一种用于神经元模拟的数据结构,由神经科学家Michael Hines开发。它是一种高效的方式来表示和计算神经元中的电压和电流,特别是在树突结构的电生理模拟中。Hines矩阵在神经元模拟软件中被广泛使用,例如在NEURON模拟器中。

Hines矩阵的主要特点和优点包括:

  1. 分支结构的有效表示: 在Hines矩阵中,神经元的树突被视为一系列电缆或分支。这种表示方式适用于复杂的树突结构,能够准确模拟电流如何在这些结构中流动。

  2. 稀疏矩阵: Hines矩阵是一个稀疏矩阵,这意味着矩阵中的大多数元素是零。这种稀疏性使得计算更加高效,因为可以跳过零元素的计算。

  3. 解决线性方程组的效率: Hines矩阵是专门为神经元模拟设计的,使得使用特定的算法(如高斯消元法)来解决由神经元电生理属性构成的线性方程组更加高效。

  4. 模拟神经动态: 使用Hines矩阵可以有效地模拟神经元内部电位的时间动态,包括动作电位的产生和传播。

在实际应用中,Hines矩阵的使用大大提高了计算神经元电生理行为的效率,尤其是在需要模拟复杂神经网络时。通过利用其结构的特点,Hines矩阵可以在保持精确度的同时,减少计算量和提高速度。

举例

假设我们有一个简单的神经元,它由一个细胞体(Soma)和两个树突分支构成。每个树突分支又可以进一步被划分为更小的段落。Hines矩阵就是用来表示这些树突分支及其相互连接的。

为了简化,我们假设每个树突分支只划分为两段。那么我们的神经元模型可能看起来像这样:

Soma
  | \
  |  Branch 2
  |    | \
  |    |  Segment 2.2
  |    Segment 2.1
  Branch 1
    | \
    |  Segment 1.2
    Segment 1.1

在这个模型中,Soma连接着两个树突分支(Branch 1和Branch 2),每个分支又包括两个段落(例如,Branch 1包含Segment 1.1和Segment 1.2)。

在Hines矩阵中,这个结构会被转换成一个矩阵,其中每一行和每一列代表一个特定的神经元部分(Soma、每个树突分支的每个段落)。矩阵中的元素表示这些部分之间的电连接。这样的矩阵可能是稀疏的,因为并不是每个部分都直接与其他部分相连。

这个矩阵可能看起来像这样:

SomaSegment 1.1Segment 1.2Segment 2.1Segment 2.2
Somaxa0b0
Segment 1.1ayc00
Segment 1.20cz00
Segment 2.1b00wd
Segment 2.2000dv

在这个矩阵中:

  • "x", "y", "z", "w", "v" 表示每个部分自身的属性,如电阻或电容。
  • "a", "b", "c", "d" 表示不同部分之间的电连接强度。
  • 0表示没有直接连接。

请注意,这个矩阵是为了说明目的而极度简化的。实际的Hines矩阵要复杂得多,因为它需要准确地表示神经元的详细分支结构和电生理特性。在实际应用中,这个矩阵用于计算神经元内部的电位和电流分布,特别是在响应输入信号时。

Hines方法

Hines方法是一种用于神经元模拟计算的算法,它主要包括两个对称的阶段:三角化(triangularization)和回代(back-substitution)。在分析串行计算的Hines方法时,可以发现其数据依赖关系可以被构造成一种树状结构,这里树的节点代表了详细神经元模型中的各个隔室(compartments)。

三角化阶段

在三角化过程中,每个节点的值依赖于其子节点。具体来说,这个阶段涉及到将系统的线性方程组转换成上三角形式。在这个过程中,每个树突隔室(或者说是树的每个节点)的计算都会考虑到它的子隔室(子节点)的信息。这意味着在计算过程中,从树的底部(叶节点)开始,逐渐向上进行,每一步都依赖于下一级隔室的计算结果。

回代阶段

相比之下,在回代过程中,每个节点的值则依赖于其父节点。这一阶段的目的是解出线性方程组中的未知数,这通常是通过从上三角矩阵的底部开始,逐个解出每个变量。在这里,每个树突隔室的计算将会依赖于它上一级隔室(父节点)的计算结果。

这种数据依赖的树状结构使得Hines方法在处理神经元模拟时非常高效。通过这种方式,可以高效地计算出神经元各个部分的电压和电流分布,特别是在复杂的神经网络模型中。这一方法在NEURON等神经元模拟软件中得到了广泛应用,是神经科学计算领域的一个重要工具。

非线性(全活性)树突 nonlinear (full-active) dendrites

非线性(全活性)树突指的是树突不仅仅是被动地传递突触信号,而是能够在其中发生复杂的非线性电活动。这些非线性特性包括:

  • 电压门控离子通道: 树突含有各种类型的电压门控离子通道,这些通道对于产生和调制树突的电活动至关重要。这些通道在特定的电压下打开或关闭,影响树突对传入信号的响应。

  • 局部信号放大: 由于电压门控离子通道的存在,树突可以对微弱的输入信号进行局部放大,产生所谓的树突尖峰(dendritic spikes)。

  • 信号整合: 非线性树突在空间上整合多个突触输入,并在时间上整合这些输入的动态模式。这种整合是非线性的,意味着输出信号并不总是与输入信号成简单的比例关系。

突发依赖型突触可塑性 burst-dependent synaptic plasticity

突发依赖型突触可塑性是一种突触强度变化的机制,它依赖于神经元的突发放电模式。在这种机制中:

  • 突发放电: 指的是神经元在短时间内快速连续地放电,通常是对强烈或重要输入的响应。

  • 突触强度的调节: 突触强度(即突触传递效率)可以根据突发放电的存在和频率而增强或削弱。例如,如果一个突触连续发生在神经元突发之前,这个突触可能会被强化。

  • 记忆和学习: 这种可塑性机制在记忆形成和学习过程中发挥关键作用,尤其是在涉及时序信息处理的任务中。

基于尖峰预测的学习  learning with spike prediction

基于尖峰预测的学习是一种学习机制,它侧重于预测神经元放电活动(即“尖峰”)的时间。这种学习形式在以下方面显著:

  • 时序预测: 在这种学习模式中,神经网络被训练来预测何时会发生下一个神经动作电位(尖峰)。

  • Hebbian学习原则: “神经元同时放电则相互连接”——基于尖峰时间的接近程度调节突触强度,即如果两

个神经元的放电行为时间上接近,它们之间的突触连接就会被加强。

  • 尖峰时序依赖可塑性(STDP): 这是一种特殊形式的Hebbian学习,其中突触的变化不仅取决于神经元是否同时活动,还取决于它们活动的相对时间顺序。例如,如果突触前神经元先于突触后神经元放电,则突触可能会增强;反之则可能会削弱。

  • 信息编码和处理: 这种学习机制使神经元网络能够对环境中的时序模式进行编码,从而处理复杂的时空信息。这在理解大脑如何处理感官输入和进行决策方面尤为重要。

总结来说,非线性树突、突发依赖型突触可塑性和基于尖峰预测的学习是神经科学中用于描述神经元和神经网络如何处理信息和适应环境变化的重要概念。这些概念不仅对理解大脑功能至关重要,而且对开发更高级的人工智能和机器学习算法提供了灵感和指导。

  • 22
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值