const int MAXN=20010;//点数
const int MAXM=50010;//边数
struct Edge
{
int to,next;
}edge[MAXM];
int head[MAXN],tot;
int low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含点的个数,数组编号1~scc
//num数组不一定需要,结合实际情况
void addedge(int u,int v)
{
edge[tot].to=v;edge[tot].next=head[u];head[u]=tot++;
}
void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].to;
if(!DFN[v])
{
Tarjan(v);
if(Low[u]>Low[v])Low[u]=Low[v];
}
else if(Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if(Low[u]==DFN[u])
{
scc++;
do
{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}
while(v!=u);
}
}
void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,0,sizeof(num));
Index=scc=top=0;
for(int i=1;i<=N;i++)
if(!DFN[i])
Tarjan(i);
}
void init()
{
tot=0;
memset(head,-1,sizeof(head));
}
//Kosaraju算法
//复杂度O(n+m)
const int MAXN=20010;
const int MAXM=50010;
struct Edge
{
int to,next;
}edge[MAXM],edge2[MAXM];
//edge是原图G,edge2是逆图GT
int head1[MAXN],head2[MAXM];
bool mark1[MAXN],mark2[MAXN;
int tot1,tot2;
int cnt1,cnt2;
int st[MAXN];//对原图进行st,点的结束时间从小到大排序
int Belong[MAXN];//每个点属于哪个连通分量(0~cnt2-1)
int num;//中间变量,用来数某个连通分量中点的个数
int setNum[MAXN];//强连通分量中点的个数,编号0~cnt2-1
void addedge(int u,int v)
{
edge1[tot1].to=v;edge1[tot1].next=head1[u];head1[u]=tot1++;
edge2[tot2].to=u;edge2[tot2].next=head2[v];head2[v]=tot2++;
}
void DFS1(int u)
{
mark1[u]=true;
for(int i=head1[u];i!=-1;i=edge1[i].next)
if(!mark1[edge1[i].to])
DFS1(edge1[i].to);
st[cnt1++]=u;
}
void DFS2(int u)
{
mark2[u]=true;
num++;
Belong[u]=cnt2;
for(int i=head2[u];i!=-1;i=edge2[i].next)
if(!mark2[edge2[i].ti])
DFS2(edge2[i].to);
}
void solve(int n)
{
memset(mark1,false,sizeof(mark1));
memset(mark2,false,sizeof(mark2));
cnt1=cnt2=0;
for(int i=1;i<=n;i++)
if(!mark1[i])
DFS1(i);
for(int i = cnt1-1;i >= 0; i--)
if(!mark2[st[i]])
{
num=0;
DFS2(st[i]);
setNum[cnt2++] = num;
}
}