数据可视化之 星图

      在数据可视化中,如果数据是三维或者不多于六维的话,那么星图就是反映数据分布得最佳图像。R的基础包里面提供了绘制星图的函数——stars()函数。每一个星图都是由五个角构成,用线段离中心的长度来表示变量值的大小,用于展示多个变量的个体,每个变量的图形相互独立,即每个角都有一条轴线与中心点连接起来这五条轴线,它们分别对应了数据的维度,数值越大,轴线越长,画出来的星图也就越大,因此说如果数据维度不超过六维的适合用星图来分析。由于星图整幅图形看起来像星星一样,因此称之为星图。
      首先我们来看看stars()函数的原型:

stars(x, full = TRUE, scale = TRUE, radius = TRUE,
      labels = dimnames(x)[[1]], locations = NULL,
      nrow = NULL, ncol = NULL, len = 1,
      key.loc = NULL, key.labels = dimnames(x)[[2]],
      key.xpd = TRUE,
      xlim = NULL, ylim = NULL, flip.labels = NULL,
      draw.segments = FALSE,
      col.segments = 1:n.seg, col.stars = NA, col.lines = NA,
      axes = FALSE, frame.plot = axes,
      main = NULL, sub = NULL, xlab = "", ylab = "",
      cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
      mar = pmin(par("mar"),
                 1.1+ c(2*axes+ (xlab != ""),
                 2*axes+ (ylab != ""), 1, 0)),
      add = FALSE, plot = TRUE, ...)

下表则是对这些参数的大致说明:

参数

描述

x

一个多维数据矩阵或数据框,每一行数据将生产一个星图

full

逻辑值,决定图形是圆形还是半圆,默认为true

scale

是否将数据标准化到区间[0,1],默认为true

radius

是否画出半圆半径,也就是星图内部的那些线段,默认为true

labels

每个星图个体的名称,默认为数据的行名

locations

以一个两列的矩形给出每个星图的位置,默认放在一个规则的矩形网络上,若提供给参数一个长度为2的向量,那么所有星图都将被放在该坐标上,从而形成一个蜘蛛网或雷达图。

len

半径和线段的缩放倍数

key.loc

比例尺的坐标位置

key.labels

比例尺的标签,默认为变量的名称

key.xpd

比例尺的作图范围

file.labels

每个星图底部的名称是否相互上下错位,以免因名称太长导致文本相互重叠

draw.segments

是否做线段图,即每个变量以一个扇形表示,默认为false

col.segments

每个扇形区域的颜色,注:draw.segmentsfalse时无效

col.stars

设置某个特定星图的颜色  注:draw.segmentsfalse时无效

frame.plot

是否给整个图形画一个边框


   我们使用的数据集是iris数据集。现在开始我们的第一个星图吧。

stars(iris)


如果我们不需要星图内部的那些小线段的话,那就设置radius为FALSE.

stars(iris,radius=FALSE)



如果说我们只需要显示每个星图的一半,只需要将参数full设置为FALSE.

stars(iris,full=FALSE)

如果我们需要显示每一个变量的话就要提供labels参数,它默认为空。通过head(iris)查看到iris数据集每行变量名为第五列。

head(iris)
x<-iris[,5]#此时的x为factor,我们需要将它转为character类型
x<-as.character(x)
class(x)#检查数据类型是否转换成功
stars(iris,labels=x)#画图

但我们发现这个排版特别乱,变量名和星图之间相互重叠。这个时候我们就需要flip.labels参数设置为FALSE即可。

stars(iris,labels=x,flip.labels=FALSE)


   这张图的话就是底下几行的变量名字太长重合了,我们可以win.graph()函数,它可以设置图像面板的大小,也可以设置字体大小。

win.graph(width=10.5, height=9.5,pointsize=9)
stars(iris,labels=x,flip.labels=FALSE)

这下是不是整齐多了。

颜色:

接下来,我们谈谈颜色,这里主要有一下几种对颜色设置的方法:

1.给每个块加颜色

使用draw.segments参数

stars(iris,draw.segments = TRUE)

     使用col.segments 参数,只有当draw.segments 为 TRUE时,col.segments 参数才有效。

stars(iris,draw.segments = TRUE,col.segments = rainbow(8))

2.线条加色

在对线条加色是,我们仅需对col.lines参数进行设置,仅当draw.segments 为FALSE时才有效。

stars(iris,draw.segments = FALSE,col.lines=c(1:150))



   好了,这就是对星图的一个总结,现在,我们就来一个大综合,将前面这些综合在一块来绘制一副图。

win.graph(width=10.5, height=9.5,pointsize=9)
stars(iris,draw.segments = TRUE,col.segments = rainbow(7),
main="iris数据分析", frame.plot = TRUE,labels=x,flip.labels=FALSE)#frame.plot是给图片四周加了一个黑框




注:本博客也会同步发布在微信公众号《跟着菜鸟一起学R语言》

转载请注明原文链接:http://blog.csdn.net/wzgl__wh/article/details/52827937



  • 7
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
《Python数据可视化之美》是一本介绍使用Python进行数据可视化的PDF电子书。这本书由专业的作者团队编写,旨在帮助读者学习如何使用Python编程语言进行数据可视化并创建优雅的图表和可视化效果。 《Python数据可视化之美》首先介绍了Python编程语言的基本知识,以便读者能够理解如何使用Python进行数据处理和分析。然后,书详细介绍了各种数据可视化库和工具,如Matplotlib、Seaborn、Plotly和Bokeh等,通过实例展示了如何使用这些工具创建各种类型的图表,如线图、散点图、柱状图、饼图等。此外,书还介绍了高级可视化技巧,如动态图表、地理信息可视化和网络图可视化等,读者可以通过这些技巧创建更加复杂和引人注目的图表和可视化效果。 这本书的优点在于其简洁明了的讲解风格和丰富的示例代码。每个章节都提供了具体的示例代码和详细的解释,读者可以通过实践来学习和理解各种数据可视化技巧。此外,书还提供了实战项目和练习题,帮助读者进一步巩固所学知识。 通过阅读《Python数据可视化之美》,读者可以学习到使用Python进行数据可视化的基本技能和工具,并且能够借助这些技能和工具来创建出生动有趣、有吸引力的图表和可视化效果。无论是从事数据分析、数据科学还是数据可视化的初学者还是专业人士,都可以从这本书获得丰富的知识和实践经验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值