王亨的博客

人生就是一张白纸,精彩不精彩,就看你怎么去描绘。

基于 TensorFlow 的图像识别(R实现)

提到机器学习,深度学习这些,大家都会立马想起Python。但R的实力也不容小觑。今天就用R来演示一个基于TensorFlow的图像识别的例子。如果你想运行这些代码,就必须先安装配置好TensorFlow,我是在Linux系统上面运行的。如何配置TensorFlow尽量看看官方文档,虽然是英文的,但是最新的,也是最准确的。

废话不说,直接来看代码,在代码中我也做了详细的注释,看起来应该不是很困难。

library(tensorflow) #加载TensorFlow包

library(magrittr) #数据处理包,可以使用管道函数

slim= tf$contrib$slim #slim是一个使构建,训练,评估神经网络变得简单的库。

# slim提供了很多计算机视觉方面的著名模型(VGG, AlexNet等),我们不仅可以直接使用,甚至能以各种方式进行扩展。

tf$reset_default_graph() #在每次运行中清除当前图形,以避免变量重复#Session会话 张量的具体值和操作,会话关闭时,张量的任何具体值都会丢失

images = tf$placeholder(tf$float32, shape(NULL, NULL, NULL, 3))# 创建占位符

imgs_scaled = tf$image$resize_images(images, shape(224,224)) #设置图片大小# slim$conv2d自带卷积功能+激励函数 

fc8 = slim$conv2d(imgs_scaled, 64, shape(3,3), scope='vgg_16/conv1/conv1_1') %>% 
  slim$conv2d(64, shape(3,3), scope='vgg_16/conv1/conv1_2')  %>%
  slim$max_pool2d( shape(2, 2), scope='vgg_16/pool1')  %>% #池化操作

  slim$conv2d(128, shape(3,3), scope='vgg_16/conv2/conv2_1')  %>%
  slim$conv2d(128, shape(3,3), scope='vgg_16/conv2/conv2_2')  %>%
  slim$max_pool2d( shape(2, 2), scope='vgg_16/pool2')  %>%

  slim$conv2d(256, shape(3,3), scope='vgg_16/conv3/conv3_1')  %>%
  slim$conv2d(256, shape(3,3), scope='vgg_16/conv3/conv3_2')  %>%
  slim$conv2d(256, shape(3,3), scope='vgg_16/conv3/conv3_3')  %>%
  slim$max_pool2d(shape(2, 2), scope='vgg_16/pool3')  %>%

  slim$conv2d(512, shape(3,3), scope='vgg_16/conv4/conv4_1')  %>%
  slim$conv2d(512, shape(3,3), scope='vgg_16/conv4/conv4_2')  %>%
  slim$conv2d(512, shape(3,3), scope='vgg_16/conv4/conv4_3')  %>%
  slim$max_pool2d(shape(2, 2), scope='vgg_16/pool4')  %>%

  slim$conv2d(512, shape(3,3), scope='vgg_16/conv5/conv5_1')  %>%
  slim$conv2d(512, shape(3,3), scope='vgg_16/conv5/conv5_2')  %>%
  slim$conv2d(512, shape(3,3), scope='vgg_16/conv5/conv5_3')  %>%
  slim$max_pool2d(shape(2, 2), scope='vgg_16/pool5')  %>%

  slim$conv2d(4096, shape(7, 7), padding='VALID', scope='vgg_16/fc6')  %>%
  slim$conv2d(4096, shape(1, 1), scope='vgg_16/fc7') %>% 

  # Setting the activation_fn=NULL does not work, so we get a ReLU
  slim$conv2d(1000, shape(1, 1), scope='vgg_16/fc8')  %>%
  tf$squeeze(shape(1, 2), name='vgg_16/fc8/squeezed')

tf$summary$FileWriter('/tmp/dumm/vgg16', tf$get_default_graph())$close() #保存在/tmp/dumm/vgg16目录下

restorer = tf$train$Saver() #创建一个Saver 来管理模型中的所有变量。

sess = tf$Session()
restorer$restore(sess, 'vgg_16.ckpt') #复原模型

library(jpeg)
img1<-readJPEG('caomei.jpg') #img1的值在0-1之间。

d=dim(img1)  #获取img1的维度
imgs =array(255*img1,dim = c(1,d[1],d[2],d[3]))
#因为数值需要在0到225之间,所以需要乘225.形成一个四维数组#我们可以通过与存储在数组imgs中的图像的张量来对图像做预测

fc8_vals=sess$run(fc8,dict(images=imgs))#将fc8的张量存储在fc8_vals中。
fc8_vals[1:5]

probs=exp(fc8_vals)/sum(exp(fc8_vals))

#按概率从高排序,并取前五个。
idx=sort.int(fc8_vals,index.return = TRUE,decreasing = TRUE)$ix[1:5]

#读取图像分类文件
library(readr)
names = read_delim("imagenet_classes.txt", "\t", escape_double = FALSE, trim_ws = TRUE,col_names = FALSE)
library(grid) #图片处理的一个包,主要控制输出图形的大的外观和一些细节东西的排列

g = rasterGrob(img1, interpolate=TRUE)  #图形进行栅格化

text = ""for (id in idx) {
  text = paste0(text, names[id,][[1]], " ", round(probs[id],5), "\n") 
}

#annotate 添加文本注释
#annotation_custom 可以添加各种图形元素到ggplot图中

library(ggplot2)
ggplot(data.frame(d=1:3)) + annotation_custom(g) + 
  annotate('text',x=0.05,y=0.05,label=text, size=7, hjust = 0, vjust=0, color='blue') + xlim(0,1) + ylim(0,1)

主要代码转自:

https://randomthoughtsonr.blogspot.com/2016/11/image-classification-in-r-using-trained.html

我在网上找的了一张草莓的图片,使用该模型进行识别。


识别结果如下图,不过结果还挺准的。是草莓的概率是0.99999。不过有的情况下识别结果还是不太准的,毕竟这个模型也是有限的。


再来一张二哈(英文名:Siberian husky,取自百度百科)的照片,我专门在百度百科上面找了一张二哈比较霸气的照片。在百度百科上面找的主要原因就是保证这张照片就是二哈。


图片来自百度百科 词条“西伯利亚雪橇犬”

分析结果表明是二哈的可能性是0.592.基本上还是挺准的。


也许就有人说Siberian husky和husky,有什么区别,百度百科上面他们好像就是一个。在维基百科查阅发现,Siberian husky是husky的一个品种,husky还包括了其他品种比如拉布拉多犬哈士奇,我相信一些爱狗人士可能会董。于是我在维基百科上面的husky词条找到了下面这张照片。



图片来源 维基百科 词条“Husky”


结果显示是husky的概率是0.46234.还是挺准的,毕竟这只是一张侧脸照。把这两张照片放在一块,我觉得一般人都分不清楚。



补充:

由于TensorFlow发展比较快,如果看一些比较旧的资料,比如两年前的资料,在用最新的TensorFlow时,输入有的API就会报错,我在这跟大家分享几个API更新后的名字,希望在用的时候能帮到大家。

旧版本新版本
tf.multf.multiply
tf.subtf.subtract
tf.negtf.negative
tf.train.SummaryWritertf.summary.FileWriter


程序中用到的vgg16模型以及imagenet_classes.txt我已经通过百度网盘分享给大家了,在我的公众号《跟着菜鸟一起学R语言》后台回复vgg16即可获取下载链接。

注:

作者:王亨

公众号:跟着菜鸟一起学R语言

原文链接:http://blog.csdn.net/wzgl__wh/

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzgl__wh/article/details/79312839
个人分类: 机器学习 R语言
所属专栏: R语言
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

基于 TensorFlow 的图像识别(R实现)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭