Mapreduce 导出HBase table 数据到HDFS路径

前言

由于HBase到Hive的Mapping无法把timestamp映射过去,见官方解释:https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

Column Mapping

There are two SERDEPROPERTIES that control the mapping of HBase columns to Hive:

  • hbase.columns.mapping
  • hbase.table.default.storage.type: Can have a value of either string (the default) or binary, this option is only available as of Hive 0.9 and the string behavior is the only one available in earlier versions

The column mapping support currently available is somewhat cumbersome and restrictive:

  • for each Hive column, the table creator must specify a corresponding entry in the comma-delimited hbase.columns.mapping string (so for a Hive table with n columns, the string should have n entries); whitespace should not be used in between entries since these will be interperted as part of the column name, which is almost certainly not what you want
  • a mapping entry must be either :key or of the form column-family-name:[column-name][#(binary|string) (the type specification that delimited by # was added in Hive 0.9.0, earlier versions interpreted everything as strings)
    • If no type specification is given the value from hbase.table.default.storage.type will be used
    • Any prefixes of the valid values are valid too (i.e. #b instead of #binary)
    • If you specify a column as binary the bytes in the corresponding HBase cells are expected to be of the form that HBase's Bytes class yields.
  • there must be exactly one :key mapping (we don't support compound keys yet)
  • (note that before HIVE-1228 in Hive 0.6, :key was not supported, and the first Hive column implicitly mapped to the key; as of Hive 0.6, it is now strongly recommended that you always specify the key explictly; we will drop support for implicit key mapping in the future)
  • if no column-name is given, then the Hive column will map to all columns in the corresponding HBase column family, and the Hive MAP datatype must be used to allow access to these (possibly sparse) columns
  • there is currently no way to access the HBase timestamp attribute, and queries always access data with the latest timestamp.
  • Since HBase does not associate datatype information with columns, the serde converts everything to string representation before storing it in HBase; there is currently no way to plug in a custom serde per column
  • it is not necessary to reference every HBase column family, but those that are not mapped will be inaccessible via the Hive table; it's possible to map multiple Hive tables to the same HBase table

The next few sections provide detailed examples of the kinds of column mappings currently possible.


所以只能自己写MR程序导出HBase Table的数据到HDFS路径里面

然后,在load到Hive中供查询


HBase API

HBase提供相关的MR API供我们快速开发MapReduce去读取和写入HBase Table的数据。
下面是TableMapper API
/**
 * Extends the base <code>Mapper</code> class to add the required input key
 * and value classes.
 *
 * @param <KEYOUT>  The type of the key.
 * @param <VALUEOUT>  The type of the value.
 * @see org.apache.hadoop.mapreduce.Mapper
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public abstract class TableMapper<KEYOUT, VALUEOUT>
extends Mapper<ImmutableBytesWritable, Result, KEYOUT, VALUEOUT> {

}

你会发现,只需要提供数据的key/value 就可以了,HBase已经帮我们封装好了输入,keyin:ImmutableBytesWritable 是rowKey
Result就是该rowKey所对应的结果集

TabelReducer
/**
 * Extends the basic <code>Reducer</code> class to add the required key and
 * value input/output classes. While the input key and value as well as the
 * output key can be anything handed in from the previous map phase the output
 * value <u>must</u> be either a {@link org.apache.hadoop.hbase.client.Put Put}
 * or a {@link org.apache.hadoop.hbase.client.Delete Delete} instance when
 * using the {@link TableOutputFormat} class.
 * <p>
 * This class is extended by {@link IdentityTableReducer} but can also be
 * subclassed to implement similar features or any custom code needed. It has
 * the advantage to enforce the output value to a specific basic type.
 *
 * @param <KEYIN>  The type of the input key.
 * @param <VALUEIN>  The type of the input value.
 * @param <KEYOUT>  The type of the output key.
 * @see org.apache.hadoop.mapreduce.Reducer
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public abstract class TableReducer<KEYIN, VALUEIN, KEYOUT>
extends Reducer<KEYIN, VALUEIN, KEYOUT, Mutation> {
}

所以写起程序来非常的简单
Mapper
public class HBaseTableMapper extends TableMapper<Text, Text> {

    private String userId;
    private String columnFamily;
    private String qualifier;
    private Long timestamp;
    private Object val;

    private KeyValue[] kv;

    private static Text keyOut;
    private static Text valOut;


    @Override
    protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
        // get user id
        userId = new String(key.get());
        kv = value.raw();
        timestamp = kv[0].getTimestamp();
        val = new String(kv[0].getValue());
        qualifier = new String(kv[0].getQualifier());
        columnFamily = new String(kv[0].getFamily());

        // use timestamp as key to sort, reduce only get
        //keyOut.set(DumpUtils.combineString(timestamp, userId));

        // only use userId as key, be sure that the userId record is unique
        keyOut.set(userId);
        valOut.set(DumpUtils.combineString(columnFamily, qualifier, val, timestamp));
        context.write(keyOut, valOut);
    }

    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        keyOut = new Text();
        valOut = new Text();
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
        super.cleanup(context);
    }
}

因为我只需要把table的数据读出来即可,所以不需要reducer
main entry
public class HBaseDump {

    private static Map<String, Object> parseCmd(final String[] args) throws ParseException {
        Options options = new Options();
        options.addOption("config", true, "project configuration");

        CommandLineParser paraer = new BasicParser();
        CommandLine line = paraer.parse(options, args);
        if (line.hasOption("config")) {
            return ConfigParser.load(line.getOptionValue("config"));
        } else if (line.hasOption("help")) {
            usage();
        }

        return null;
    }

    private static void usage() {
        System.out.println("hadoop jar xxxx.jar <main.class> -config <config file path>");
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, ParseException {
        Map map = parseCmd(args);
        System.out.println(map.toString());

        final String tableName = (String) map.get(Constant.TABLE_NAME);
        final String cf  = (String) map.get(Constant.TABLE_COLUMN_FAMILY);
        final String qualifier = (String) map.get(Constant.TABLE_QUALIFIER);
        final String jobName = (String) map.get(Constant.JOB_NAME);
        final String output = (String) map.get(Constant.OUTPUT_PATH);
        final String HBASE_RPC_ENGINE = (String) map.get(Constant.HBASE_RPC_ENGINE);
        final int reduceTasks = Integer.parseInt((String) map.get(Constant.MAPRED_REDUCE_TASKS));

        Configuration configuration = HBaseConfiguration.create();
        configuration.set(Constant.HBASE_ZOOKEEPER_QUORUM, (String) map.get(Constant.HBASE_ZOOKEEPER_QUORUM));
        configuration.set(Constant.HBASE_ZOOKEEPER_PROPERTY_CLIENTPORT, (String) map.get(Constant.HBASE_ZOOKEEPER_PROPERTY_CLIENTPORT));
        configuration.set(Constant.HBASE_RPC_ENGINE, HBASE_RPC_ENGINE);
        configuration.set(Constant.ZOOKEEPER_ZNODE_PARENT, (String) map.get(Constant.ZOOKEEPER_ZNODE_PARENT));

        Job job = new Job(configuration, jobName);
        job.setOutputFormatClass(TextOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setNumReduceTasks(reduceTasks);

        Path path = new Path(output);
        FileSystem fs  = FileSystem.get(configuration);
        if (fs.exists(path)) {
            fs.delete(path, true);
        }
        FileOutputFormat.setOutputPath(job, new Path(output));

        Scan scan = new Scan();
        scan.addColumn(Bytes.toBytes(cf), Bytes.toBytes(qualifier));
        // scan.setFilter(new FirstKeyOnlyFilter());
        TableMapReduceUtil.initTableMapperJob(tableName, scan,
                HBaseTableMapper.class, Text.class,
                Text.class, job);
        //TableMapReduceUtil.initTableReducerJob(tableName, HBaseDumpReducer.class, job);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

}

完整的代码见github:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值