RSA加密理解和数论基础

本文深入探讨了RSA加密背后的数论基础,包括最大公约数、互质、素数、同余式及其性质。还详细介绍了RSA的数学推导,如欧拉定理、费马小定理以及欧几里德算法,并阐述了加解密过程和安全性的考量。此外,文章提及了素数检测方法和Java实现的相关知识。
摘要由CSDN通过智能技术生成

数论基础

RAS这个缩写是它的三个作者的姓氏首字母.
论文
https://people.csail.mit.edu/rivest/Rsapaper.pdf
http://gauss.math.luc.edu/greicius/Math201/Fall2012/Lectures/euler-phi.article.pdf

RFC规范
https://tools.ietf.org/html/rfc3447

最大公约数

gcd(a, n) = x, gcd为Greatest Common Divisor缩写
表示a,n的最大公约数为x

互质

若gcd(a, n) = 1, 则称a与n互质

素数

设x为大于1的正整数, 对于[2, x-1]之间的任意正整数ni,
若gcd(x, ni)=1
则称x为素数, 或质数

同余式

对于两个整数, 如果 (a-b) mod m = 0, 则称 a对m取模 = b对m取模, 符号表示为
a ≡ b (mod m),
例如 2 ≡ 7 (mod 5)
性质:
1.反身性:a≡a (mod m)
2.对称性:若a≡b(mod m),则b ≡ a (mod m)
3.传递性:若a≡b(mod m),b ≡ c ( mod m),则a≡c(mod m)
4.同余式相加:若a≡b(mod m),c ≡ d( mod m),则a±c ≡ b±d (mod m)

同余式乘法

若a≡b(mod m),c ≡ d( mod m),则ac ≡ bd ( mod m)

同余式除法

若ac≡bc(mod m), c≠0,则 a≡b ( mod m/gcd(c,m))

同余式幂运算

若a≡b(mod m),则an ≡ bn ( mod m )

欧拉定理

网上到处都是.
若a,n为正整数, 且互质(有的也称为互素) , 即 gcd(a, n) = 1
则:
aφ(n) ≡ 1 (mod n)
φ(n)为 处于[1, n-1]之间的且与n互质的正整数的个数

举例,
设n=10, a=3
那么[1, 9]之间与10互质的数字有1,3,7,9, 共4个数字, 即
φ(10)=4
34 mod 10 = 81 mod 10 = 1

证明过程, 看看别人写的

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值