AD620B
VOSI+ VOSO/G
IOS=
Gain Error = 0.15%
Gain Nonlinearity = 40ppm,
0.1Hz to 10Hz Noise = 280nVp-p
CMR = 120dB @ 60Hz,
有以下已知条件:
It is important to understand in-amp error sources in a typical application. Figure 1 below shows a
The table shows how each error source contributes to a total unadjusted error of 2145 ppm. Note however that
42.8
以下的计算好像都是对输入端而言:
1. VOS
2. IOS
3. Gain Error
4. CMR Error
1ppm × 5V ÷ 100mV
如何得到的,(见下面的解释,)
5. Gain Nonlinearity
6. 0.1Hz to 10Hz 1/f Noise
它讲了,这二项误差是无法消除的。
7. Resolution Error
这二项误差对精度的贡献是42.8ppm, (14位的精度是61.0ppm,)
8.
它还不足9位精度,( 9位的精度是1953.1ppm,)
根据这个公式:CMRR = 20log(Vcm/Vcm_diff ),
它是指在放大器输入端处共模电压Vcm在输入端所产生的对应的等价差模电压Vcm_diff。
如果再辅以某些温度测量修正算法,可用来补偿静态误差的漂移。
但对仪表放大器中非线性度和噪声导致的分辨率误差进行补偿,则难度很大。
失调电流和偏置电流对精度的影响:
偏置电流进出于仪表放大器的输入端。这些通常就是npn或pnp晶体管的基极电流。因此,对于特定类型的仪表放大器,这些小电流有着明确的极性。当偏置电流通过源阻抗时,会产生电压误差。偏置电流乘以源阻抗结果得到一个小直流电压,与输入失调电压呈串联关系。但是,如果仪表放大器的两个输入端均以同一源阻抗为参照,则相等的偏置电流会产生一个小共模输入电压(通常为μV信号),具备相应共模抑制功能的任何器件均可较好地抑制这种电压。如果仪表放大器的反相和同相输入端的源阻抗不等,那么误差会更大,其大小为偏置电流乘以源阻抗差。
另外,我们还需考虑失调电流,即两个偏置电流之差。这种差异将产生一个等于失调电流与源阻抗之积的失调误差。
对运算放大器及仪表放大器的选取原则如下(主要指精度方面):
1.
这个指标涉及到仪表的“灵敏度”,即“输入失调电压”造成的后果是:
另外,还要注意仪表放大器的指标和后续A/D的位数匹配是否满足精度的要求。
Table 1 shows the minimum resolvable potential difference (magnitude of the
LSB) of A/D converters.
system, then a change of the LSB corresponds to a voltage change of 0.73 mV.
An op amp having an input offset voltage of 1 mV and an amplification factor of
1 already exceeds the acceptable error resulting from the resolution of the LSB.
Table 1. Resolution of an A/D Converter
BITS
VCC = 5 V
10
12
仪表放大器将两个信号的差值放大。典型的差模信号来自传感器件,例如电阻桥或热电偶。来自电阻桥的差模电压被 AD620(低功耗,低成本,集成仪表放大器)放大。在热电偶和电阻桥的应用中,差模电压总是相当小(几毫伏到十几毫伏)。而两个输入端输入的同极性、同幅值的电压一般都比较大,量级都在伏级,这就是:对测量无用的共模分量,所以理想的仪表放大器应该放大输入端两信号的差值,任何共模分量都必须被抑制。事实上,抑制共模分量是使用仪表放大器的唯一原因。(这句话是我抄来的,我倒是有点异议,那差分信号变成单端信号怎么变呢 ??)
补充知识:
- 对于弱信号比较理想的选择是采用多级放大的方式,尽量避免使用放大器的高增益段。因为放大倍数太大,会带来增益误差,在某些情况下,甚至造成增益的不稳定,从而影响测量精度。
另一个因素是:
有关的公式如下:
Total Error, RTO = (Gain * Input Error) + Output Error,
2.
Even when a 1%,100 ppm/℃ resistor is used, the gain accuracy of the in-amp will be degraded. The resistor’s initial room temperature accuracy is only 1%, and the resistor will drift another 0.01% (100 ppm/℃) for every ℃ change in temperature. The initial gain error can easily be subtracted out in software, but to correct