【开放域目标检测】二:Learning transferable visual models from natural language supervision论文简单讲解

一句话总结:利用text信息监督视觉任务自训练,本质就是将分类任务化成了图文匹配任务,效果可与全监督方法相当。

一、目前sota的视觉系统局限性在哪里?

最先进的计算机视觉系统被训练来预测一组预定的物体类别。这种受限的监督形式限制了它们的通用性和可用性,因为需要额外的标记数据来指定任何其他视觉概念。

在目前图像分类领域中,我们训练的模型通常会遇到以下问题:

  • 模型需要用到大量的格式化标注数据,这些标注数据获取通常成本高昂。
  • 模型在当前数据集的效果比较好,但是可能模型的泛化能力较差,同时迁移到新的训练任务也比较困难。

与此同时,互联网上面已经存在了大量的图像文本对(在网页中,开发者一般都会为图片添加一段文字备注),实际上这些素材可以作为已经标注好的数据集,利用这些数据集进行训练,既能解决获取标注数据成本高昂的问题,同时也因为互联网上的数据量比较大和数据本身差异较大,更容易让我们获得泛化能力较强的模型。

CLIP 模型就是基于上述概念,使用 OpenAI 收集到的 4 亿对图像文本对,分别将文本和图像进行编码,之后使用 metric learning 进行训练,其目标是将图像与文本的相似性提高。

二、本文提出的解决办法

直接从原始文本中学习图像是一个很有前途的选择,它利用了更广泛的监督来源。

CLIP模型的实际效果:

  • 我们证明了简单的预训练任务,即预测哪个标题caption与哪个图像相匹配,是一种有效的、可拓展的方法,可以从互联网上收集的4亿个(图像、文本)对数据集上从头开始学习SOTA的图像表示;
  • 在预训练后,使用自然语言来引用学习到的视觉概念(或描述新的概念),使模型zero-shot转移到下游任务;
  • 我们通过对30多个现有计算机视觉数据集的基准测试来研究这种方法的性能,这些数据集涵盖了OCR、视频中的动作识别、地理定位和许多类型的细粒度对象分类等任务;
  • 该模型可以很好地转换到大多数任务中,并且经常能与完全监督的基线相竞争,而不需要任何数据集特定的训练。例如,我们在ImageNet zero-shot上得到了与原始ResNet-50相似的准确性,而不需要使用它所训练的128万个训练示例中的任何一个。

在预测阶段,也是通过一系列生成的文本对和目标图像,计算余弦相似度从而获取预测值:

在这里插入图片描述

  • 双流,2个encoder分别处理文本和图片数据,text encoder使用Transformer,image encoder用了两种模型,ResNet和Vision Transformer(ViT);
  • encoder representation直接线性投影到multi-modal embedding space;
  • 计算2模态之间的cosine similarity,让N个匹配的图文对相似度最大,不匹配的图文对相似度最小;
  • 对称的cross-entropy loss;
  • 数据增强:对resized图片进行random square crop。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值