【计算机视觉 | 图像分类】图像分类常用数据集及其介绍(五)

一、ImageNet-O

ImageNet-O 由 ImageNet-1k 数据集中未找到的类图像组成。 它用于测试视觉模型对分布外样本的鲁棒性。 它是使用 AUPR 指标来报告的。

在这里插入图片描述

二、PlantVillage

PlantVillage 数据集包含 54303 张健康和不健康的叶子图像,按物种和疾病分为 38 个类别。

在这里插入图片描述

三、CIFAR-10N (Real-World Human Annotations)

这项工作提出了两个新的基准数据集(CIFAR-10N、CIFAR-100N),为 CIFAR-10 和 CIFAR-100 的训练数据集配备了我们从 Amazon Mechanical Turk 收集的人工注释的真实世界噪声标签。

四、DVS128 Gesture

包含 3 种照明条件下 29 名受试者的 11 种手势类别。

五、MINC (Materials in Context Database)

MINC 是一个大规模、开放的野外材料数据集。

在这里插入图片描述

六、BigEarthNet

BigEarthNet 由 590,326 个 Sentinel-2 图像块组成,每个图像块都是 i) 10m 带的 120x120 像素的一部分; ii) 20m 波段的 60x60 像素; iii) 60m 波段的 20x20 像素。

七、Oxford-IIIT Pet Dataset

Oxford-IIIT 宠物数据集有 37 个类别,每个类别大约有 200 张图像。 这些图像在比例、姿势和灯光方面有很大的变化。 所有图像都有相关的品种、头部 ROI 和像素级三图分割的地面实况注释。

在这里插入图片描述

八、MultiMNIST

MultiMNIST 数据集是从 MNIST 生成的。 训练和测试是通过将一个数字叠加在同一组(训练或测试)但不同类别的另一个数字之上来生成的。 每个数字在每个方向最多移动 4 个像素,从而生成 36×36 的图像。 考虑到 28×28 图像中的数字被限制在 20×20 的框中,两个数字的边界框平均有 80% 的重叠。 对于 MNIST 数据集中的每个数字,都会生成 1,000 个 MultiMNIST 示例,因此训练集大小为 60M,测试集大小为 10M。

在这里插入图片描述

九、PGM (Procedurally Generated Matrices (PGM))

PGM 数据集是研究模型中的抽象推理和泛化的工具。 泛化是一种多方面的现象; 模型没有单一、客观的方式可以或应该概括超出其经验。 PGM 数据集提供了一种以不同方式衡量模型泛化能力的方法,每种方式可能或多或少让研究人员感兴趣,具体取决于他们预期的训练设置和应用。

在这里插入图片描述

十、WOS (Web of Science Dataset)

Web of Science (WOS) 是一个文档分类数据集,包含 134 个类别的 46,985 个文档,其中包括 7 个父类别。

十一、CARS196

CARS196由196个类别的16,185张汽车图像组成。

十二、CIFAR-100N (Real-World Human Annotations)

这项工作提出了两个新的基准数据集(CIFAR-10N、CIFAR-100N),为 CIFAR-10 和 CIFAR-100 的训练数据集配备了我们从 Amazon Mechanical Turk 收集的人工注释的真实世界噪声标签。

十三、JFT-3B

JFT-3B 是 Google 内部数据集,也是 JFT-300M 数据集的更大版本。 它由近 30 亿张图像组成,通过半自动管道用大约 30k 标签的类层次结构进行注释。 换句话说,数据和相关标签是有噪声的。

十四、SUN Attribute

SUN 属性数据集由来自 717 个场景类别的 14,340 张图像组成,每个类别都用 102 个区分属性的分类法进行注释。 该数据集可用于高级场景理解和细粒度场景识别。

在这里插入图片描述

十五、Open Images V4

Open Images V4 提供跨多个维度的大规模:19800 个概念的 3010 万个图像级标签、600 个对象类的 1540 万个边界框以及涉及 57 个类的 375k 视觉关系注释。 特别是对于对象检测,提供的边界框比第二大数据集(190 万张图像上的 1540 万个框)多 15 倍。 这些图像通常显示具有多个对象的复杂场景(平均每张图像 8 个带注释的对象)。 它们之间的视觉关系被注释,这支持视觉关系检测,这是一项需要结构化推理的新兴任务。

在这里插入图片描述

十六、Tiny-ImageNet-C

Tiny-ImageNet-C 是一个开源数据集,包含应用于 Tiny-ImageNet (ImageNet-200) 测试集的算法生成的损坏(模糊、噪声)。

十七、Places365

Places365 数据集是场景识别数据集。 它由 1000 万张图像组成,包含 434 个场景类。 该数据集有两个版本:Places365-Standard,包含来自 K=365 场景类的 180 万个训练图像和 36000 个验证图像,以及 Places365-Challenge-2016,其中训练集的大小增加到 620 万个额外图像, 包括 69 个新场景类别(来自 434 个场景类别的总共 800 万张列车图像)。

在这里插入图片描述

十八、SUN397

Scene UNderstanding (SUN) 数据库包含 899 个类别和 130,519 张图像。 有 397 个采样良好的类别,可评估众多最先进的场景识别算法。

在这里插入图片描述

### 回答1: PlantVillage是一个农业科学平台,致力于通过技术和合作来改善农民的生计和农业生产。葡萄叶片数据是PlantVillage收集的关于葡萄叶片的信息和统计数据。 葡萄叶片数据包含了葡萄植物叶片的形态、颜色、纹理等关键特征的描述和测量结果。这些数据有助于识别不同葡萄品种、判断叶片健康状况,甚至预测病虫害的发生。 通过收集和分析葡萄叶片数据,农业专家和研究人员可以深入了解葡萄植物的生长和发育过程。他们可以通过比较不同葡萄品种的叶片特征,研究葡萄的遗传特性和适应性。同时,他们也可以利用叶片数据检测和监测葡萄病害,及时采取措施保护葡萄植物的健康。 葡萄叶片数据还可以用于培训农民和农业工作者,教导他们如何正确判断葡萄植物的生长状态和叶片健康情况。农民可以通过收集和分析叶片数据来了解葡萄植物的需求,优化施肥和灌溉方案,提高葡萄产量和质量。 总之,葡萄叶片数据是PlantVillage在农业科学研究和农民培训中的重要资源。通过分析这些数据,我们可以更好地了解葡萄植物的特征和状况,为保护葡萄植物的健康和提高农业生产水平提供科学依据。 ### 回答2: PlantVillage葡萄叶片数据是一种开源的、在线的农业平台,旨在帮助农民和园艺爱好者更好地诊断和解决葡萄叶片疾病问题。该平台收集了大量的葡萄叶片图像,并通过图像识别技术和机器学习算法,为用户提供准确的疾病诊断与防治建议。 葡萄叶片数据是由全球用户上传的葡萄叶片图像组成。这些图像经过分类和标记,根据不同疾病类型和严重程度进行了分类。平台通过收集这些数据,建立起庞大的数据库,从而使用户可以通过上传疑似受损葡萄叶片的图像,获得关于可能疾病类型以及可能的解决方案的反馈。 平台通过使用现代图像处理和机器学习技术来分析这些图像。通过与已知疾病样本进行比对,算法可以识别出葡萄叶片上的疾病类型,并根据确定的疾病类型给出建议的解决方案,例如适当的病害防治方法、肥料使用或其他管理措施。这种方式使得农民能够更加准确地判断葡萄叶片状况,及时采取措施防治疾病,提高葡萄产量和质量。 值得一提的是,PlantVillage葡萄叶片数据是免费提供给全球用户的。任何人都可以访问该平台,上传和查询相关图像。这使得平台在全球社区中广泛应用,用户可以分享经验、讨论问题,并共同促进葡萄种植业的发展。 总而言之,PlantVillage葡萄叶片数据是一个利用图像识别和机器学习技术,为全球用户提供关于葡萄叶片疾病诊断与防治建议的开源平台。通过收集和分析大量葡萄叶片图像,该平台为农民提供准确的状况判断和治疗建议,促进葡萄种植业的可持续发展。 ### 回答3: PlantVillage葡萄叶片数据是指由PlantVillage收集和记录的有关葡萄叶片状况的信息和统计数据。葡萄叶片数据包括叶片的颜色、形状、大小以及是否受到病害、真菌感染或其他病害的影响。这些数据可以帮助农民和植物学家了解葡萄植物的健康状况和潜在问题,并采取相应的措施预防疾病和保护植物。葡萄叶片数据还可以用于研究葡萄植物的遗传特征和生态环境的影响,以提高葡萄的品质和产量。PlantVillage通过收集来自农民和植物学家的葡萄叶片照片和相关信息,构建了一个庞大的数据库,可以帮助用户识别和诊断葡萄叶片问题,并提供相应的解决方案和建议。利用这些数据,农民可以及时发现和解决问题,从而减少病害对葡萄产量和质量的影响。同时,植物学家可以通过分析这些数据,了解葡萄植物的适应能力和抗病性,为培育更强壮的品种提供参考。总之,PlantVillage葡萄叶片数据为农民和植物学家提供了宝贵的信息资源,有助于改善葡萄种植的管理和保护。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值