Python 之Scikit-learn(六) -- Scikit-learn提供的独热编码

独热编码(One-Hot Encoding)是一种常用的将分类数据转换为数值数据的技术。Scikit-learn 提供了 OneHotEncoder 类来方便地进行独热编码。下面是独热编码的原理、适用情况以及使用 Scikit-learn 进行独热编码的详细介绍和示例代码。

原理

独热编码是一种将分类变量转换为二进制向量的编码方式。每个类别都用一个独特的二进制向量表示,向量的长度等于类别的总数。在该向量中,只有一个元素是1,其他元素都是0。例如,有三个类别 ['cat', 'dog', 'mouse'],独热编码后将变为:

  • cat: [1, 0, 0]
  • dog: [0, 1, 0]
  • mouse: [0, 0, 1]

适用情况

独热编码适用于以下情况:

  • 分类变量需要转换为数值变量,供机器学习模型使用。
  • 适用于没有顺序的分类数据(如颜色、性别、城市等)。
  • 适用于大多数机器学习算法,特别是线性模型、树模型、神经网络等。

Scikit-learn 独热编码示例

下面是使用 Scikit-learn 进行独热编码的详细步骤和示例代码。

1. 导入必要的库

import numpy as np
from sklearn.preprocessing import OneHotEncoder

2. 创建示例数据

假设我们有一个包含三个分类特征的数据集:

data = np.array([
    ['cat'
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值