2023年中国研究生数学建模竞赛E题(九):问题二b题:血肿周围水肿建模与治疗关联性研究(理论+源代码)

本文分析了2023年中国研究生数学建模竞赛E题,聚焦血肿周围水肿的建模及治疗关联性。通过K-means、高斯混合模型和模糊C均值聚类方法,对患者数据进行聚类,以理解水肿体积随时间的模式,评估不同治疗方法的效果。
摘要由CSDN通过智能技术生成

一、问题分析

首先整理数据集:

在这里插入图片描述
为了探索患者水肿体积随时间进展的个体差异,首先我们需要将患者分成不同的亚组。这些亚组可以基于一些潜在的特征或因素来定义,以便更好地理解水肿体积随时间的模式。

首先,我们需要确定将患者分成亚组的依据。这可以基于一些临床特征、疾病史、治疗方案或其他因素来实现。例如,我们可以考虑以下几种可能的依据:

将患者按年龄段划分成不同亚组,例如青年、中年和老年患者。将患者根据疾病严重程度划分成亚组,例如轻度、中度和重度患者。将患者根据接受的治疗方法划分成亚组,例如手术治疗、药物治疗和其他治疗方法。

一旦确定了亚组划分的依据,我们可以针对每个亚组构建水肿体积随时间进展的曲线。这可以通过以下步骤来完成:

Step1:选择属于每个亚组的患者数据。

Step2:对于每位患者,根据其重复检查时间点和水肿体积数据,构建水肿体积随时间的曲线。

Step3:可以选择适当的数学模型(例如高斯模型、多项式拟合或非线性模型)来拟合每个亚组的水肿体积随时间的变化。

在每个亚组的曲线拟合后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值