文章目录
一、问题分析
首先整理数据集:

为了探索患者水肿体积随时间进展的个体差异,首先我们需要将患者分成不同的亚组。这些亚组可以基于一些潜在的特征或因素来定义,以便更好地理解水肿体积随时间的模式。
首先,我们需要确定将患者分成亚组的依据。这可以基于一些临床特征、疾病史、治疗方案或其他因素来实现。例如,我们可以考虑以下几种可能的依据:
将患者按年龄段划分成不同亚组,例如青年、中年和老年患者。将患者根据疾病严重程度划分成亚组,例如轻度、中度和重度患者。将患者根据接受的治疗方法划分成亚组,例如手术治疗、药物治疗和其他治疗方法。
一旦确定了亚组划分的依据,我们可以针对每个亚组构建水肿体积随时间进展的曲线。这可以通过以下步骤来完成:
Step1:选择属于每个亚组的患者数据。
Step2:对于每位患者,根据其重复检查时间点和水肿体积数据,构建水肿体积随时间的曲线。
Step3:可以选择适当的数学模型(例如高斯模型、多项式拟合或非线性模型)来拟合每个亚组的水肿体积随时间的变化。
在每个亚组的曲线拟合后
本文分析了2023年中国研究生数学建模竞赛E题,聚焦血肿周围水肿的建模及治疗关联性。通过K-means、高斯混合模型和模糊C均值聚类方法,对患者数据进行聚类,以理解水肿体积随时间的模式,评估不同治疗方法的效果。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



