文章目录
一、问题分析
根据问题描述,我们的目标是预测患者是否会发生血肿扩张事件。我们将利用前100例患者的个人史、疾病史、发病及治疗相关特征,以及他们的每次影像检查结果等特征,构造模型对所有患者发生血肿扩张的概率进行预测。
首先对数据进行预处理,包括缺失值处理、特征编码、数据归一化或标准化等,以使数据适合模型训练。
在构建模型之前,需要对特征进行选择。这可能涉及到特征的筛选、降维或转换,以确保模型具有最相关的输入特征。
接下来我们选择适当的机器学习算法来构建分类模型。常见的算法包括逻辑回归、决策树、随机森林、支持向量机等。使用前100例患者的数据,将模型进行训练。这包括将特征变量与目标变量(是否发生血肿扩张事件)进行匹配,以学习模型的参数。对模型进行评估,通常采用交叉验证或保留一部分数据作为验证集,来评估模型的性能。常用的评估指标包括准确度、召回率、精确度、F1分数等。
最终,我们将得到每个患者发生血脉扩张事件的概率预测结果。

该博客详细介绍了2023年中国研究生数学建模竞赛E题的血肿扩张风险相关因素建模过程。作者首先分析问题,目标是预测患者血肿扩张概率,接着进行数据预处理,包括异常值检查和特征选择。在模型建立部分,讨论了基于互信息和随机森林的特征选择方法,以及XGBoost和LightGBM两种分类模型的选择和比较。文章还提及了交叉验证在模型评估中的应用。
订阅专栏 解锁全文
358

被折叠的 条评论
为什么被折叠?



