近几天跑完实验后,发现效果确实不错,于是开始进行模型的参数量、计算量和速度指标的计算对比。
模型的参数量越小,这个模型的计算量不一定小,速度也不一定快。
文章目录
一、指标理解
1.1 参数量
在机器学习和深度学习领域,模型的参数量通常指的是构成模型的可学习参数的总数。这些参数在模型训练过程中通过数据进行调整,以便模型能够更好地执行特定任务,如分类、回归或其他。参数量是评估模型复杂度的一个重要指标。
以下是一些关于模型参数量的基本概念:
1.1.1 参数类型
- 权重(Weights):这些是在网络的各层之间进行转换的参数。
- 偏置(Biases):这些参数用于在网络层的输出上添加一些偏置值,以便更好地拟合数据。
1.1.2 计算参数量
- 在全连接层(Dense Layer),参数量计算公式通常是 (输入特征数 × 输出特征数) + 输出特征数。例如,一个有100个输入和10个输出的全连接层将有 (100 × 10) + 10 = 1010 个参数。
- 在卷积层(Convolutiona
本文介绍了计算机视觉中MMDetection框架下如何计算模型的参数量、计算量(FLOPs)和FPS。参数量影响模型复杂度、计算资源和训练时间;计算量用于评估模型的计算复杂度;FPS则衡量处理速度和实时性能。文章详细解析了参数量的计算,指出参数量与计算量并不直接决定运行速度,并提供了在MMDetection中查看这些指标的方法。
订阅专栏 解锁全文
847

被折叠的 条评论
为什么被折叠?



