【计算机视觉 | MMDetection】关于mmdetection如何计算参数量、计算量和速度FPS

本文介绍了计算机视觉中MMDetection框架下如何计算模型的参数量、计算量(FLOPs)和FPS。参数量影响模型复杂度、计算资源和训练时间;计算量用于评估模型的计算复杂度;FPS则衡量处理速度和实时性能。文章详细解析了参数量的计算,指出参数量与计算量并不直接决定运行速度,并提供了在MMDetection中查看这些指标的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近几天跑完实验后,发现效果确实不错,于是开始进行模型的参数量、计算量和速度指标的计算对比。

模型的参数量越小,这个模型的计算量不一定小,速度也不一定快。

一、指标理解

1.1 参数量

在机器学习和深度学习领域,模型的参数量通常指的是构成模型的可学习参数的总数。这些参数在模型训练过程中通过数据进行调整,以便模型能够更好地执行特定任务,如分类、回归或其他。参数量是评估模型复杂度的一个重要指标。

以下是一些关于模型参数量的基本概念:

1.1.1 参数类型
  • 权重(Weights):这些是在网络的各层之间进行转换的参数。
  • 偏置(Biases):这些参数用于在网络层的输出上添加一些偏置值,以便更好地拟合数据。
1.1.2 计算参数量
  • 在全连接层(Dense Layer),参数量计算公式通常是 (输入特征数 × 输出特征数) + 输出特征数。例如,一个有100个输入和10个输出的全连接层将有 (100 × 10) + 10 = 1010 个参数。
  • 在卷积层(Convolutional Layer),参数量取决于滤波器/核的大小、数量以及输入和输出通道的数量。
1.1.3 参数量的影响
  • 性能:通常来说,参数量较多的模型能够学习更复杂的数据模式,但也更容易过拟合。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值