卷积神经网络

1、卷积核 

    卷积核的深度应该和被卷积的图像的深度一致;

    卷积后输出的特种映射的深度和卷积核的数量相关,有n个卷积核参与卷积操作,卷积后的特征映射的深度就是n。

2、卷积操作

    卷积操作,内积操作,即卷积核对应元素与被卷积图像对应元素相乘后再相加,得到一个值;然后各个通道得到的值相加后再加上偏置值,然后送入到激活函数进行非线性变换。

3、pading操作

    为了更好地利用边缘特征,可以使用padding操作。为什么呢?

    假如没有padding操作,步长为1的情况下,边缘的像素比中间的像素少提取了一次(对于一次横向滑动),同理纵向。这样的情况下就会弱化边缘特征的作用。

    所以,为了更好公平地对待边缘特征,可以使用padding,一般边缘pad的像素值为0的,因为我们的目的是想更好地利用边缘特征,pad值为0的话,与卷积核对应值相乘为0,对最终结果没有影响(其实是有影响的,因为边缘特征也提取了同样次数啊,哈哈哈哈)

4、卷积后输出特征映射的大小的计算:

       h = (input_h+2*pading-filter)/stride +1

       w = (input_w+2*pading-filter)/stride +1


5、卷积神经网络的特性:权重共享

6、pooling层

    pooling层没有权重参数,

7、卷积层的前向传播:


     卷积层的反向传播:


8、pooling层的前向传播:

     pooling层的反向传播:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值