1、卷积核
卷积核的深度应该和被卷积的图像的深度一致;
卷积后输出的特种映射的深度和卷积核的数量相关,有n个卷积核参与卷积操作,卷积后的特征映射的深度就是n。
2、卷积操作
卷积操作,内积操作,即卷积核对应元素与被卷积图像对应元素相乘后再相加,得到一个值;然后各个通道得到的值相加后再加上偏置值,然后送入到激活函数进行非线性变换。
3、pading操作
为了更好地利用边缘特征,可以使用padding操作。为什么呢?
假如没有padding操作,步长为1的情况下,边缘的像素比中间的像素少提取了一次(对于一次横向滑动),同理纵向。这样的情况下就会弱化边缘特征的作用。
所以,为了更好公平地对待边缘特征,可以使用padding,一般边缘pad的像素值为0的,因为我们的目的是想更好地利用边缘特征,pad值为0的话,与卷积核对应值相乘为0,对最终结果没有影响(其实是有影响的,因为边缘特征也提取了同样次数啊,哈哈哈哈)
4、卷积后输出特征映射的大小的计算:
h = (input_h+2*pading-filter)/stride +1
w = (input_w+2*pading-filter)/stride +1
5、卷积神经网络的特性:权重共享
6、pooling层
pooling层没有权重参数,
7、卷积层的前向传播:
卷积层的反向传播:
8、pooling层的前向传播:
pooling层的反向传播: