数据结构实验之图论八:欧拉回路
Time Limit: 1000MS
Memory Limit: 65536KB
Problem Description
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。
能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。
你的任务是:对于给定的一组无向图数据,判断其是否成其为欧拉图?
Input
连续T组数据输入,每组数据第一行给出两个正整数,分别表示结点数目N(1 < N <= 1000)和边数M;随后M行对应M条边,每行给出两个正整数,分别表示该边连通的两个结点的编号,结点从1~N编号。
Output
若为欧拉图输出1,否则输出0。
Example Input
1 6 10 1 2 2 3 3 1 4 5 5 6 6 4 1 4 1 6 3 4 3 6
Example Output
1
Hint
如果无向图连通并且所有结点的度都是偶数,则存在欧拉回路,否则不存在。
#include <iostream>
#include <memory.h>
using namespace std;
int po[1024][1024];
int vi[1024];
int num[1024];
int n, m, t, flag;
void DFS(int k)
{
flag++;
vi[k]=1;
for(int i=1;i<=n;i++)
{
//num[flag++]=i;//这样是用来记录DFS遍历点的顺序
if(!vi[i] && po[k][i])
{
DFS(i);
}
}
}
int main()
{
int T;
cin>>T;
while(T--)
{
cin>>n>>m;
flag=0;
memset(po,0,sizeof(po));
memset(vi,0,sizeof(vi));
memset(num,0,sizeof(num));
int i;
for(i=0; i<m; i++)
{
int a, b;
cin>>a>>b;
po[a][b]=po[b][a]=1;
num[a]++;
num[b]++;
}
DFS(1);
for(i=1;i<=n;i++)
{
if(num[i]%2==1)
{
break;
}
}
if(i==n+1 && flag==n)
{
cout<<1<<endl;
}
else
{
cout<<0<<endl;
}
}
return 0;
}
#include <memory.h>
using namespace std;
int po[1024][1024];
int vi[1024];
int num[1024];
int n, m, t, flag;
void DFS(int k)
{
flag++;
vi[k]=1;
for(int i=1;i<=n;i++)
{
//num[flag++]=i;//这样是用来记录DFS遍历点的顺序
if(!vi[i] && po[k][i])
{
DFS(i);
}
}
}
int main()
{
int T;
cin>>T;
while(T--)
{
cin>>n>>m;
flag=0;
memset(po,0,sizeof(po));
memset(vi,0,sizeof(vi));
memset(num,0,sizeof(num));
int i;
for(i=0; i<m; i++)
{
int a, b;
cin>>a>>b;
po[a][b]=po[b][a]=1;
num[a]++;
num[b]++;
}
DFS(1);
for(i=1;i<=n;i++)
{
if(num[i]%2==1)
{
break;
}
}
if(i==n+1 && flag==n)
{
cout<<1<<endl;
}
else
{
cout<<0<<endl;
}
}
return 0;
}