python做可视化数据图表,python可视化图表代码

这篇文章主要介绍了python可视化图做好了怎么弄下来,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达3f7ccc0211bd35e08057ce903c2b724c.png

作者:CrescentAI,华南理工大学,Datawhale优秀学习者

前言

本文对课程数据集及泰坦尼克号数据集进行了实例讲解,一步一步带你绘制数据可视化中常用的五种图形,并对数据间可能存在的相关性做出了阐述。

9c91e57a6de3b46a3bd1d0ff5fffec36.png

绘制常用图形

常用图形有:

  • plt.scatter() 散点图

  • plt.plot()    折线图

  • plt.bar() 直方图

  • plt.pie() 饼图

  • plt.boxplot() 箱型图

 本次实例数据集可在后台回复【学生成绩】来获取有趣简单的python程序代码

#导入相应的包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#图可以显示中文和负号
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']=False
data = pd.read_excel("D:\data\student-score\student-score.xlsx")
data.head()
cceca238f5a6e8714057888171219080.png
data = data.drop(columns = ["序号","品德","科学"],axis = 1) #由于品德和科学的总分与其他学科不一致,为了图片显示效果,删除这两个学科成绩
data.loc[:,"总分"] = data.loc[:,"语文"] + data.loc[:,"数学"] + data.loc[:,"英语"]  #重新计算总分成绩
data.head()
6acb79c626e3aa6c5cc9255d6aab70c6.png

接着我们还可以查看其数据结构:

data.shape  #查看数据结构

# 输出
(629, 6)

以及查看各学科的缺失值情况:

data.isnull().sum()  #查看缺失值情况

'''
姓名    0
学校    0
语文    1
数学    0
英语    0
总分    1
dtype: int64
'''

对于这些缺失值,我们可以选择使用dropna()函数删除:

data = data.dropna()  #删除缺失值
data.shape  # (628, 6)

再使用describe()函数进行简单的统计描述:

data.describe()  #简单统计描述
f9c95d192aa941112ee221cf83740dca.png
散点图
gp = data.groupby(by = "学校",as_index=False)  #以学校为分组依据进行分组
data1=gp.mean() #分组后的聚合运算为计算均值
data1.head()

得到结果:

6c9ee0379bff699ff10d3ab565693d1a.png
# 绘制各学科成绩散点图
plt.figure(figsize=(6,4))
plt.scatter(data1["总分"],data1["语文"],marker='v')
plt.scatter(data1["总分"],data1["数学"],marker='o')
plt.scatter(data1["总分"],data1["英语"],marker='*')
plt.title("各学校成绩散点图",fontsize = 14)
plt.xlabel("总成绩")
plt.ylabel("各学科成绩")
plt.legend(["语文","数学","英语"]);
050c3efb70f9263bc240fa0f08ff741d.png
# 绘制各学科成绩散点图
plt.figure(figsize=(6,4))
plt.scatter(data1["总分"],data1["语文"],marker='v')
plt.title("各学校语文与总分成绩散点图",fontsize = 14)
plt.xlabel("总成绩")
plt.ylabel("各学科成绩")
plt.legend(["语文"])

# <matplotlib.legend.Legend at 0x1da13d256c8>
c7953a7371696ee8a2c79ad3da48dd5f.png
# 绘制各学科成绩散点图
data1.plot.scatter(x = "总分", y = "语文")
plt.title("语文与总分成绩散点图")
data1.plot.scatter(x = "总分", y = "数学")
plt.title("数学与总分成绩散点图")
data1.plot.scatter(x = "总分", y = "英语")
plt.title("英语与总分成绩散点图")
# plt.show()

得到Text(0.5, 1.0, '英语与总分成绩散点图'),且散点图结果如下:

053b99865fe56744d2b53d5f2d099917.png 1ffdb3e9b367263ae5a869722f9e39f5.png e693cee3f5107142fd8f7820e12d79f1.png
折线图
data1.head()
dd030ab06629fe8562da1ce9bb58e37c.png
data1["序号"]=data1.学校.str.extract('(\d+)')
data1
32bfe9832d9bd60ace0a51d0c778a9c9.png 4b5766fe8f5d3334161c42ee7740aa06.png
ser1 = data1.序号
ser1

得到输出:

0     10
1     11
2     12
3     13
4     14
5     15
6     16
7     17
8     18
9     19
10     1
11    20
12    21
13     2
14     3
15     4
16     5
17     6
18     7
19     8
20     9
Name: 序号, dtype: object

接着:

ser1 = ser1.astype("int")
ser1

得到输出:

0     10
1     11
2     12
3     13
4     14
5     15
6     16
7     17
8     18
9     19
10     1
11    20
12    21
13     2
14     3
15     4
16     5
17     6
18     7
19     8
20     9
Name: 序号, dtype: int32

可以尝试删除序号列,并且重设索引列:

del data1["序号"]
data1.index = ser1
data1
f1d182ab3c57e7b97b48083f2abe6380.png 64a3370352fa466ec65001d979eb6e77.png

再按照索引排序,可得到相应结果:

data1=data1.sort_index()
data1
b528a1d33d72b3e28f64a53529c41969.png 91191bdc45edf61efeb458afc23da9cb.png

接着查看一共有多少行数据作为x轴数据

len(data1) # 21

再将各科成绩数据进行绘图,得到折线图结果:

plt.figure(figsize=(10,4))
plt.plot(range(21),data1.iloc[:,1],'-*') #选取语文成绩数据
plt.plot(range(21),data1.iloc[:,2],'-o') #选取数学成绩数据
plt.plot(range(21),data1.iloc[:,3],'-v') #选取英语成绩数据
plt.title('各学科成绩变化走势图')
plt.xlabel('各学校')
plt.ylabel('学科成绩')
plt.xticks(range(21),data1["学校"],rotation=30)  #rotation=30控制文字倾斜角度
plt.legend(['语文','数学','英语']);
3b9bcfb129f14c31a79106869550d716.png
直方图
yw = data1.loc[:,"学校":"语文"]  #提取数据绘制直方图,直方图原理,每个需要被画图的标签对应一个数值
yw = yw.T
yw
321f22ca1df8ce56e6bf3fe9c3e02c2e.png
yw.columns = yw.iloc[0]  #将学校字段转换成列索引
yw1 = yw.drop("学校",axis=0)  #删多余的行信息
yw1
7a16bca1f0f8a416773d1f37e6575370.png

再将语文成绩数据进行绘图,得到直方图结果:

# 每个学校语文平均成绩的直方图
plt.figure(figsize=(12,4))
plt.bar(range(21),yw.loc["语文",:],width=0.5)
plt.title("语文成绩直方图",fontsize = 14)
plt.ylabel("语文成绩",fontsize = 14)
plt.xticks(range(21),yw.iloc[0],rotation=30,fontsize = 12); #x轴刻度为各学校名称
43d4b4739b8d0a42a4ec3e01d727fbac.png
sx = data1.loc[:,["学校","数学"]]
sx = sx.T
sx
8140689fe902b4a00d336d84c2d68ca6.png
sx.columns = sx.iloc[0]
sx = sx.drop("学校",axis=0)
sx
e115ec0c1fc03153168c5fb2662f0e47.png

再将数学平均成绩数据进行绘图,得到直方图结果:

# 每个学校数学平均成绩的直方图
plt.figure(figsize=(12,4))
plt.bar(range(21),sx.loc["数学",:],width=0.5)
plt.title("数学成绩直方图",fontsize = 14)
plt.ylabel("数学成绩",fontsize = 14)
plt.xticks(range(21),yw.iloc[0],rotation=30,fontsize = 12); #x轴刻度为各学校名称
08d60cf58a4fb5bbe754f1c9f72fe24d.png

将多个学科成绩画到一副图中

data1
770cdbe039a413174e769e7e8fb5ad7e.png 79ca451d77355243cd11e31f43876855.png
data2 = data1.drop("总分",axis = 1)  #新建一个dataframe,删掉总分列,因为总分和单科成绩相差太多,影响绘图效果
data2.head()
e36ff5fa3579bfb5ced47269c135223d.png
# 将多个学科成绩画到一张图中  #截取前十
data2.plot.bar(x = '学校',y = ['语文','数学','英语'],figsize=(16,6),width=0.7,rot = 30,title = "各学科成绩直方图"); #rot空值标签倾斜程度
d92d9e9098c21b8c1c09d726a47bbf18.png
饼图
data2.head()
588659908507fbd3bccd62955a00b6c6.png
plt.figure(figsize=(4,4),dpi=80)
plt.pie(data2.iloc[0,1:] #选取数据源
        ,labels=['语文','数学','英语']
        ,autopct='%1.2f') #设置百分比经度
#         ,explode=[0.1,0.02,0.02]  #设置饼图各个扇区之间的间隙
#         ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第1小学各学科成绩占比',fontsize=12);
#fontsize设定字体的大小,xlabel,ylabel,title里面都可以设定
7f7afb1a0abe92679a82d74c2ee0d0c6.png
pic2 = plt.figure(figsize=(8,8),dpi=80)

fig1 = pic2.add_subplot(2,2,1) #第一个子图
plt.pie(data2.iloc[0,1:] #选取数据源 第10小学各学科成绩
        ,labels=['语文','数学','英语']
        ,autopct='%1.2f') #设置百分比经度
#         ,explode=[0.1,0.02,0.02]  #设置饼图各个扇区之间的间隙
#         ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第1小学各学科成绩占比',fontsize=12)

fig2 = pic2.add_subplot(2,2,2) #第二个字图
plt.pie(data2.iloc[1,1:] #选取数据源,第11小学各学科成绩
        ,labels=['语文','数学','英语']
        ,autopct='%1.2f') #设置百分比经度
#         ,explode=[0.1,0.02,0.02]  #设置饼图各个扇区之间的间隙
#         ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第2小学各学科成绩占比',fontsize=12)

fig3 = pic2.add_subplot(2,2,3) #第二个字图
plt.pie(data2.iloc[2,1:] #选取数据源,第12小学各学科成绩
        ,labels=['语文','数学','英语']
        ,autopct='%1.2f') #设置百分比经度
#         ,explode=[0.1,0.02,0.02]  #设置饼图各个扇区之间的间隙
#         ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第3小学各学科成绩占比',fontsize=12)

fig4 = pic2.add_subplot(2,2,4) #第二个字图
plt.pie(data2.iloc[3,1:] #选取数据源,第13小学各学科成绩
        ,labels=['语文','数学','英语']
        ,autopct='%1.2f') #设置百分比经度
#         ,explode=[0.1,0.02,0.02]  #设置饼图各个扇区之间的间隙
#         ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第4小学各学科成绩占比',fontsize=12);
9078975a521e75d1ab2a72aeb439ee7a.png
箱型图
data.head()
476e83952a7ec1e76c6bf4c3c172f164.png
data_1 = data.loc[data['学校'] =="第1小学"]  #提取第一小学的所有信息
score = (list(data_1.iloc[:,2]),list(data_1.iloc[:,3]),list(data_1.iloc[:,4]))

plt.figure(figsize=(8,6))
plt.boxplot(score
            ,labels=['语文','数学','英语']
            ,notch=True #缺口中位数位置
            ,sym='*'#设定异常值的形状
            ,whis=1.5); #设定几倍标准差之外的数据算是异常值,默认是1.5
12c3efe9b097cb7cd8ae99a8b7dac0af.png

泰坦尼克号数据

text = pd.read_csv(r'result.csv')
text.head()
0ee40f0c4ad51047f270075a715f11fa.png
男女中生存人数分布情况
sex = text.groupby('Sex')['Survived'].sum()
sex.plot.bar(color='chocolate')
plt.title('survived_count')
plt.show()
6b0e2b979298210f051ed5e9bd6c342c.png

女性比男性生存人数多。

男女中生存人与死亡人数的比例
text.groupby(['Sex','Survived'])['Survived'].count().unstack().plot(kind='bar',stacked='True')
plt.title('survived_count')
plt.ylabel('count')

# Text(0, 0.5, 'count')
083c7f6692f6fd056824ecb334032498.png

男女性生存与死亡人数的占比偏差比较大。

不同票价的人生存和死亡人数分布情况
# 排序后绘折线图
fare_sur = text.groupby(['Fare'])['Survived'].value_counts().sort_values(ascending=False)
fig = plt.figure(figsize=(20, 18))
fare_sur.plot(grid=True)
plt.legend()
plt.show()
8f85008889b24c0d2a7a1e6894d3878b.png

不同的票价所反映出来的生存人数是非常明显的,票价低的人死亡数量高是因为离甲板远,且逃生机会大大降低。

# 排序前绘折线图
fare_sur1 = text.groupby(['Fare'])['Survived'].value_counts()
fig = plt.figure(figsize=(20, 18))
fare_sur1.plot(grid=True)
plt.legend()
plt.show()
fcad0d8b0f09f9bdeb0fffc29037afce.png
不同仓位等级的人生存和死亡人员的分布情况
# 1表示生存,0表示死亡
pclass_sur = text.groupby(['Pclass'])['Survived'].value_counts()

import seaborn as sns
sns.countplot(x="Pclass", hue="Survived", data=text)

# <matplotlib.axes._subplots.AxesSubplot at 0x1da160cdc08>
456afe9112505b80589da8b80d6b1afe.png 不同年龄的人生存与死亡人数分布情况
facet = sns.FacetGrid(text, hue="Survived",aspect=3)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, text['Age'].max()))
facet.add_legend()

# <seaborn.axisgrid.FacetGrid at 0x1da16136588>
2bd170d7128cc684ffdd9e512d186477.png 不同仓位等级的人年龄分布情况
text.Age[text.Pclass == 1].plot(kind='kde')
text.Age[text.Pclass == 2].plot(kind='kde')
text.Age[text.Pclass == 3].plot(kind='kde')
plt.xlabel("age")
plt.legend((1,2,3),loc="best")

# <matplotlib.legend.Legend at 0x1da161b27c8>
98d3c34f72b9eadbac11ce33abce7d12.png

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

9ff23eb7c0ae8d38cd686b825ae8c55b.png

42affb3b7f991fa8624afd70a68fafad.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值