题意:我生日派对时,准备了n个圆柱形的pie,半径比一定相同,但高都为1,
邀请了f个朋友,加上自己一共f+1人,需要将n个pie分给f+1个人
要求:每个人分得的pie尺寸要一样大,
并且同一个人所分的pie要是从同一个pie上得到的,n个pie分完后可以有剩余
求:每个人最多可以分多少
分析:因为同一个人所分的pie都来自同一个pie,
若每个人所分的最大体积为a,那么比a小的pie肯定得舍弃。
将每个人最多分得的pie看成半径为r的圆柱,则最大尺寸为PI*r*r*1,
可以用二分算法,下界为0,上界为pie的最大半径
要注意精度问题 用const double pi=acos(-1,0)
题目大意看的别人的博客,之前看不懂这个题,作者是 happy_lcj
原文:https://blog.csdn.net/acm_code/article/details/43232591
这道题可以用二分查找来做
输入数据
3 //输入三组数据
3 3//三个蛋糕,三个人
4 3 3//三个蛋糕的半径分别是
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2
Sample Output
25.1327
3.1416
50.2655
代码如下:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
const double pi=acos(-1.0);//acos是一个函数,其功能是求反余弦。acos(-1.0)就是求-1.0的反余弦,再赋值给double类型的常变量pi
double a[10005];
int m,n;
int cmp(double a,double b)
{
return a>b;
}
int update(double mid)
{
int sum=0;
int i;
for(i=0; i<m; i++)
{
sum=sum+int(a[i]/mid);
if(sum>=n)//之前答案一直错误,就是这里忘了等于号...
return 1;
}
return 0;
}
int main()
{
int t,i;
double r,l,mid;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);//m个蛋糕,n个客人
n++;//包括自己也要分
for(i=0; i<m; i++)
{
scanf("%lf",&a[i]);//输入每个蛋糕的半径
a[i]=a[i]*a[i]*pi;//更新为每个蛋糕的体积
}
sort(a,a+m,cmp);//从大到小排序
l=0;
r=a[0];//定义左端点和右端点
if(n<m)
m=n;//当进入update函数时,,按照每个人来分,sum更新
while(r-l>1e-5)//二分法直到l=r=mid=最终解,或r-l<eps(r-l<1e-5)时结束
{
mid=(l+r)/2;
if(update(mid))//更新端点值
l=mid;
else
r=mid;
}
printf("%.4lf\n",l);//还没弄明白为什么不能答案时r或mid时候系统会判错
}
return 0;
}