【深度学习】损失函数 理解 Cross-Entropy Loss, Binary Cross-Entropy Loss

一篇好文:https://gombru.github.io/2018/05/23/cross_entropy_loss/

1 前言

计算CE Loss 之前需要加softmax层,适用于多类预测 Multi-Class Classification,类间存在竞争关系。softmax层是一种激活函数,使得所有输出加和是1,softmax层不是损失函数。
如果是二分类任务,则需要在CE Loss 之前需要加sigmoid层。

在这里插入图片描述
Multi-Class Classification任务 和 Multi-Label Classification任务区别:
在这里插入图片描述

2 sigmoid激活函数 与 Softmax激活函数

激活函数泛指讲输入非线性映射

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值