【OpenCV】【深度学习】去除图片文字;只保留图片文字;译文回填

本文介绍了使用OpenCV的传统方法和深度学习技术进行图像文字去除与保留的实践。通过传统方法可以定位并去除文字,而深度学习如STE、EnsNet等模型能更精准地完成任务。此外,还提到了SickZil-Machine和lama-cleaner作为译文回填的工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统方法

程序

import numpy as np
import cv2


def replaceZeroes(data):
    min_nonzero = min(data[np.nonzero(data)])
    data[data == 0] = min_nonzero
    return data


def SSR(src_img, size):
    L_blur = cv2.GaussianBlur(src_img, (size, size), 0)
    img = replaceZeroes(src_img)
    L_blur = replaceZeroes(L_blur)
    dst_Img = cv2.log(img / 255.0)
    dst_Lblur = cv2.log(L_blur / 255.0)
    dst_IxL = cv2.multiply(dst_Img, dst_Lblur)
    log_R = cv2.subtract(dst_Img, dst_IxL)
    dst_R = cv2.normalize(log_R, None, 0, 255, cv2.NORM_MINMAX)
    log_uint8 = cv2.convertScaleAbs(dst_R)
    return log_uint8


# 使用照片修复的办法来去掉图片中的文字
def 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值