【深度学习实践】HaGRID,YOLOv5,手势识别项目,目标检测实践项目

数据集介绍

https://github.com/hukenovs/hagrid

HaGRID(HAnd Gesture Recognition Image Dataset)的大型图像数据集,用于手势识别系统。这个数据集非常适合用于图像分类或图像检测任务,并且可以帮助构建用于视频会议服务、家庭自动化系统、汽车行业等领域的手势识别系统。

HaGRID数据集的规模达到了723GB,包含554,800张FullHD RGB图像,被分为18类手势。此外,一些图像中还包含no_gesture类,用于表示图像中存在第二只空闲手的情况。这个额外的类别包含了120,105个样本。数据集根据主题用户ID进行了划分,分为训练集(74%)、验证集(10%)和测试集(16%),其中训练集包含410,800张图像,验证集包含54,000张图像,测试集包含90,000张图像。

数据集中包含了37,583位独特的人物以及至少这么多个独特的场景。被试者的年龄跨度从18岁到65岁不等。数据集主要在室内收集,光照条件有较大的变化,包括人工光和自然光。此外,数据集还包括了在极端条件下拍摄的图像,例如面对窗户或背对窗户。被试者需要在距离相机0.5到4米的范围内展示手势。</

<think>好的,我现在要帮用户找一个使用Python实现手势识别的脚本或教程。用户之前可能接触过一些基础的手势识别项目,比如用OpenCV处理简单的图像识别,但可能现在需要更详细的代码示例或者教程。 首先,我需要回忆一下常见的Python手势识别方法。通常,手势识别可以分为基于传统图像处理的方法和基于深度学习的方法。用户提到的引用[1]是关于OpenCV的简单实现,而引用[2]则涉及YOLOv5深度学习模型。所以,用户可能需要这两种方法的示例,或者其中一种更详细的指导。 用户的问题明确要求脚本示例,所以应该提供具体的代码片段。对于OpenCV的传统方法,可能需要包括轮廓检测、背景减除、凸包检测等步骤。而深度学习的例子可能需要使用预训练模型,比如YOLOv5,或者使用MediaPipe这样的库来简化开发。 接下来,我需要确保提供的代码符合用户的环境配置。例如,是否需要安装特定的库,如opencv-python、mediapipe、numpy等。在代码示例前,可能需要给出安装命令,这样用户可以直接运行。 另外,用户可能对代码的每一部分有疑问,所以注释是必要的。比如在OpenCV的示例中,解释如何捕捉摄像头画面、处理每一帧、检测手部轮廓等步骤。而在深度学习的例子中,可能需要说明如何加载模型、处理输入图像、解析输出结果等。 还要考虑用户的不同需求,有些可能需要实时检测,有些可能需要更高的准确率。因此,提供两种不同的实现方法可以覆盖更多的应用场景。例如,传统方法适合快速实现和低计算资源,而深度学习适合高精度和复杂手势。 同时,用户可能想知道如何扩展这些示例,比如增加更多手势或应用到实际项目中。因此,在相关问题部分,可以提问关于优化性能、增加手势种类、处理复杂背景等,引导用户进一步探索。 最后,确保引用正确,用户提供的引用[1]和[2]需要正确对应到回答中的相关部分,比如OpenCV示例和YOLOv5项目结构。这有助于用户参考原始资料,获取更多细节。 总结来说,我需要整理两个代码示例:一个基于OpenCV的传统图像处理,另一个基于MediaPipe的深度学习,同时提供安装指南、代码解释和相关问题,帮助用户深入理解和应用。</think>以下是一个基于OpenCV和MediaPipe的Python手势识别基础示例,包含代码实现和关键步骤说明: ### 一、环境准备 ```bash pip install opencv-python mediapipe numpy ``` ### 二、基础手势识别代码(实时摄像头检测) ```python import cv2 import mediapipe as mp mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5, min_tracking_confidence=0.5) cap = cv2.VideoCapture(0) while cap.isOpened(): success, image = cap.read() if not success: continue # 转换色彩空间并处理 image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) results = hands.process(image) # 绘制手部关键点 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: mp.solutions.drawing_utils.draw_landmarks( image, hand_landmarks, mp_hands.HAND_CONNECTIONS) cv2.imshow('Hand Tracking', image) if cv2.waitKey(5) & 0xFF == 27: break cap.release() cv2.destroyAllWindows() ``` ### 三、关键功能解析 1. **手部关键点检测**:MediaPipe提供21个手部关键点坐标 2. **实时渲染**:通过OpenCV进行摄像头画面实时处理 3. **多手势支持**:可同时检测最多2只手(max_num_hands参数) ### 四、手势判断扩展示例 ```python def count_fingers(landmarks): tip_ids = [4,8,12,16,20] count = 0 # 大拇指判断 if landmarks[tip_ids[0]].x < landmarks[tip_ids[0]-1].x: count +=1 # 其他手指判断 for id in range(1,5): if landmarks[tip_ids[id]].y < landmarks[tip_ids[id]-2].y: count +=1 return count # 在原有循环中添加: if results.multi_hand_landmarks: for hand in results.multi_hand_landmarks: finger_count = count_fingers(hand.landmark) cv2.putText(image, f"Fingers: {finger_count}", (10,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2) ``` ### 五、进阶方案建议 1. **深度学习方案**:使用YOLOv5进行手势识别(引用[2]) 2. **数据集准备**:建议使用HaGRID或自定义数据集 3. **模型训练**:参考YOLOv5官方训练流程
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值