在扩散模型中,我们有一个前向过程(逐步向数据添加噪声)和一个反向过程(逐步去除噪声以恢复原始数据)。EulerDiscreteScheduler 使用欧拉方法来近似计算这个反向过程的每一步。 具体来说,假设我们从一个完全是噪声的图像开始,我们希望通过多个步骤逐步去除噪声,使其逼近原始图像。调度器的作用就是在每一步计算出如何调整当前的噪声图像,以使其更接近原始图像。 更详细的解释 前向过程: 这是添加噪声的过程,我们可以用一个简单的公式来描述: x t = α t