深入理解 EulerDiscreteScheduler 在扩散模型中的应用与实现

在扩散模型中,我们有一个前向过程(逐步向数据添加噪声)和一个反向过程(逐步去除噪声以恢复原始数据)。EulerDiscreteScheduler 使用欧拉方法来近似计算这个反向过程的每一步。

具体来说,假设我们从一个完全是噪声的图像开始,我们希望通过多个步骤逐步去除噪声,使其逼近原始图像。调度器的作用就是在每一步计算出如何调整当前的噪声图像,以使其更接近原始图像。

更详细的解释

  1. 前向过程: 这是添加噪声的过程,我们可以用一个简单的公式来描述:
    x t = α t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值