【深度学习】生成领域里,Normalizing Flow、GAN、VAE、Diffusion Models的区别是什么?

在生成模型领域,几种常见的方法之间有着不同的理论基础和实现机制。以下是对几种常见生成方法之间关系的详细分析:

1. Normalizing Flow

Normalizing Flow 是一种可逆变换的生成模型。其主要特点是可以精确计算生成样本的对数似然函数。Normalizing Flow 通过一系列可逆的变换将简单的分布(例如高斯分布)映射到复杂的目标分布,从而生成样本。每一步变换都是可逆的,因此整个过程是可逆的。这使得 Normalizing Flow 能够对生成样本进行精确的概率评估,从而可以明确写出对数似然函数。

2. GAN (Generative Adversarial Networks)

GAN 通过对抗学习的框架进行训练。其核心思想是生成器(Generator)和判别器(Discriminator)之间的对抗博弈。生成器尝试生成与目标数据分布相似的样本,而判别器则试图区分真实数据和生成数据。GAN 的训练目标是使生成器生成的样本无法被判别器识别为假样本。虽然 GAN 在生成高质量样本方面表现出色,但由于其对抗机制,GAN 没有明确的似然表达式,无法直接计算生成样本的对数似然函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值