文章目录
在生成模型领域,几种常见的方法之间有着不同的理论基础和实现机制。以下是对几种常见生成方法之间关系的详细分析:
1. Normalizing Flow
Normalizing Flow 是一种可逆变换的生成模型。其主要特点是可以精确计算生成样本的对数似然函数。Normalizing Flow 通过一系列可逆的变换将简单的分布(例如高斯分布)映射到复杂的目标分布,从而生成样本。每一步变换都是可逆的,因此整个过程是可逆的。这使得 Normalizing Flow 能够对生成样本进行精确的概率评估,从而可以明确写出对数似然函数。
2. GAN (Generative Adversarial Networks)
GAN 通过对抗学习的框架进行训练。其核心思想是生成器(Generator)和判别器(Discriminator)之间的对抗博弈。生成器尝试生成与目标数据分布相似的样本,而判别器则试图区分真实数据和生成数据。GAN 的训练目标是使生成器生成的样本无法被判别器识别为假样本。虽然 GAN 在生成高质量样本方面表现出色,但由于其对抗机制,GAN 没有明确的似然表达式,无法直接计算生成样本的对数似然函数。