使用 OpenAI Whisper v2 模型进行中英文混合语音识别

https://huggingface.co/openai/whisper-large-v2

使用 OpenAI Whisper 模型进行中英文混合语音识别

在本篇博客中,我们将详细介绍如何使用 OpenAI 的 Whisper 模型进行中英文混合语音识别,并设置 Hugging Face 的缓存路径。

简介

Whisper 是 OpenAI 提供的一个强大的自动语音识别(ASR)模型,能够处理多种语言的语音识别和翻译任务。本文将重点介绍如何使用 Whisper 模型进行中英文混合录音的识别,并设置 Hugging Face 的缓存路径到指定目录。

安装依赖项

首先,我们需要安装所需的 Python 库,包括 transformersdatasetstorch

pip install transformers datasets torch

加载模型和处理器

<think>嗯,用户想了解如何使用Whisper训练自定义数据集来构建语音识别模型。首先,我需要回忆一下Whisper的基本信息。WhisperOpenAI开源的自动语音识别模型,支持多语言,基于Transformer架构,对吧?用户提到的引用里提到项目Whisper-Finetune支持不同训练模式,包括无时间戳数据的情况,这可能对数据准备有帮助。 用户需要详细的步骤和教程,所以得按流程来。首先应该是环境配置,然后数据准备,接着模型训练,最后是部署。引用里的资料提到需要安装PyTorch和TensorFlow,可能还需要Hugging Face的库,比如Transformers和Datasets。数据准备的格式可能需要音频文件加对应的文本,可能需要处理成特定结构,比如数据集目录,每个音频文件对应一个文本文件。 数据预处理方面,可能需要使用Whisper自带的特征提取器,将音频转为log-Mel频谱图。然后要处理文本标签,比如分词和编码。这里要确保数据格式符合模型输入要求,可能需要使用WhisperProcessor来处理音频和文本。 训练部分,用户可能需要加载预训练模型,设置训练参数,比如学习率、批次大小,使用Hugging Face的Trainer类来简化训练过程。引用中提到的项目Whisper-Finetune可能提供了训练脚本或示例代码,可以参考他们的实现,特别是如何处理不同训练模式,比如带时间戳或不带时间戳的数据。 微调后的模型保存和评估也很重要,用户可能想知道如何测试模型效果,比如使用WER(词错误率)作为指标。部署方面,引用提到支持Web、Windows和Android部署,可能需要将模型导出为ONNX或其他格式,或者使用相应的框架进行封装。 可能还需要注意一些常见问题,比如数据集规模、计算资源要求,以及如何处理多语言的情况。用户如果数据集较小,可能需要数据增强或者迁移学习的技巧。另外,引用中提到的Google Drive集成可能帮助用户存储数据和模型,特别是在Colab环境下运行训练时。 最后,用户的问题可能还涉及具体的代码示例,比如如何加载模型、准备数据集、训练循环等。需要确保代码示例正确,并符合用户的环境配置,比如使用正确的库版本。同时,提醒用户注意依赖项的安装,避免版本冲突。</think>### 使用 Whisper 训练自定义数据集的详细步骤 #### 1. **环境配置** - **安装依赖库**:需安装 PyTorch、Hugging Face Transformers 和 Datasets 库: ```bash pip install torch transformers datasets datasets[audio] jiwer ``` - **GPU 支持**:确保 CUDA 环境已配置,以加速训练[^4]。 #### 2. **数据准备** - **数据集格式**:音频文件(如 `.wav`)需与对应文本标注文件(`.txt`)配对,目录结构示例: ``` dataset/ ├── audio/ │ ├── sample1.wav │ └── sample2.wav └── labels/ ├── sample1.txt └── sample2.txt ``` - **格式转换**:若音频非 16kHz 采样率,需使用工具(如 `ffmpeg`)转换: ```bash ffmpeg -i input.mp3 -ar 16000 output.wav ``` #### 3. **数据预处理** - **加载 Whisper 处理器**: ```python from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained("openai/whisper-small") ``` - **特征提取与标注处理**: ```python def prepare_dataset(batch): audio = batch["audio"]["array"] batch["input_features"] = processor(audio, sampling_rate=16000).input_features[0] batch["labels"] = processor.tokenizer(batch["text"]).input_ids return batch ``` #### 4. **模型加载与训练配置** - **加载预训练模型**: ```python from transformers import WhisperForConditionalGeneration model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") model.config.forced_decoder_ids = None # 禁用强制语言标记 ``` - **设置训练参数**: ```python from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="./results", per_device_train_batch_size=8, learning_rate=1e-5, num_train_epochs=3, fp16=True # 启用混合精度训练 ) ``` #### 5. **训练与评估** - **使用 Hugging Face Trainer**: ```python from transformers import Seq2SeqTrainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=dataset, tokenizer=processor.tokenizer ) trainer.train() ``` - **计算词错误率 (WER)**: ```python from evaluate import load wer_metric = load("wer") predictions = model.generate(input_features) wer = wer_metric.compute(predictions=predictions, references=labels) ``` #### 6. **模型部署(示例:Web API)** ```python from flask import Flask, request import torchaudio app = Flask(__name__) @app.route("/transcribe", methods=["POST"]) def transcribe(): audio_file = request.files["audio"] waveform, sr = torchaudio.load(audio_file) inputs = processor(waveform, return_tensors="pt", sampling_rate=16000) output = model.generate(inputs.input_features) text = processor.batch_decode(output, skip_special_tokens=True)[0] return {"text": text} ``` ### 关键注意事项 - **数据规模**:建议至少 100 小时语音数据以保障效果[^3]。 - **计算资源**:训练 `whisper-large` 需 16GB 以上 GPU 显存。 - **多语言支持**:通过设置 `language` 参数指定目标语言: ```python forced_decoder_ids = processor.get_decoder_prompt_ids(language="zh", task="transcribe") ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值