信号与系统

傅里叶变换

在线性代数的理论中,对于n维空间中的某一向量可以用其他n个正交基 { x i x j = 0 , i ≠ j } \{x_ix_j=0,i\neq j\} {xixj=0,i=j}来线性表示。假设该n维向量维Y,由n个正交基 { x 1 , x 2 , . . . , x n } \{x_1,x_2,...,x_n\} {x1,x2,...,xn}线性构成,即满足:

Y = a 1 x 1 + a 2 x 2 + . . . + a n x n (1-1) Y=a_1x_1+a_2x_2+...+a_nx_n\tag {1-1} Y=a1x1+a2x2+...+anxn(1-1)

由于任意两个不相同的基底向量都正交,则根据该特点可以通过以下方式得到某一个基底向量的系数:

Y T x n = a 1 x 1 T x 1 + a 2 x 2 T x 2 + . . . + a n x n T x n = 0 + 0 + a n x n T x n (1-2) \begin{aligned}Y^Tx_n&=a_1x^T_1x_1+a_2x^T_2x_2+...+a_nx_n^Tx_n\\ &=0+0+a_nx_n^Tx_n \end{aligned}\tag{1-2} YTxn=a1x1Tx1+a2x2Tx2+...+anxnTxn=0+0+anxnTxn(1-2)

所以对于 a n a_n an有:

a n = 1 x n 2 Y T x n (1-3) a_n={1\over x_n^2}Y^Tx_n \tag{1-3} an=xn21YTxn(1-3)

对于一个连续周期信号 f ( t ) f(t) f(t),我们可以将其看作是无数个间隔无限小的离散点构成的。取信号中的某一周期,将其看做一个无限长的向量。那么根据上面的理论,该向量可以用无限多个正交基线性表示,其中一组最常见的正交基为 { 1 , s i n ( n w t ) , c o s ( n w t ) , n = 1 , 2 , . . , ∞ } \{1,sin(nwt),cos(nwt),n=1,2,..,\infty\} {1,sin(nwt),cos(nwt),n=1,2,..,}。即:

f ( t ) = A 0 + ∑ n = 1 n = ∞ a n c o s ( n w t ) + b n s i n ( n w t ) (1-4) f(t)=A_0+\sum_{n=1}^{n=\infty}a_ncos(nwt)+b_nsin(nwt)\tag{1-4} f(t)=A0+n=1n=ancos(nwt)+bnsin(nwt)(1-4)

对于每个基底向量的系数 a n a_n an b n b_n bn A 0 A_0 A0同样可以用上面的方式来获取:

A 0 = 2 T ∫ − T 2 T 2 f ( t ) d t (1-5) A_0={2\over T}\int_{-T\over 2}^{T\over 2}f(t)dt\tag{1-5} A0=T22T2Tf(t)dt(1-5)

a n = 2 T ∫ − T 2 T 2 f ( t ) c o s ( n w t ) d t (1-6) a_n={2\over T}\int_{-T\over 2}^{T\over 2}f(t)cos(nwt)dt\tag{1-6} an=T22T2Tf(t)cos(nwt)dt(1-6)

b n = 2 T ∫ − T 2 T 2 f ( t ) s i n ( n w t ) d t (1-7) b_n={2\over T}\int_{-T\over 2}^{T\over 2}f(t)sin(nwt)dt\tag{1-7} bn=T22T2Tf(t)sin(nwt)dt(1-7)

欧拉公式是工科学习中的一个非常重要的知识点,该给出了指数和正弦函数的关系:

e j w t = c o s ( w t ) + j s i n ( w t ) (1-8) e^{jwt}=cos(wt)+jsin(wt)\tag{1-8} ejwt=cos(wt)+jsin(wt)(1-8)

所以可以用指数来表示正弦和余弦,即:

c o s ( w t ) = 1 2 ( e j w t + e − j w t ) (1-9) cos(wt)={1\over 2}(e^{jwt}+e^{-jwt})\tag{1-9} cos(wt)=21(ejwt+ejwt)(1-9)

s i n ( w t ) = − j 1 2 ( e j w t − e − j w t ) (1-10) sin(wt)=-j{1\over 2}(e^{jwt}-e^{-jwt})\tag{1-10} sin(wt)=j21(ejwtejwt)(1-10)

所以公式(1-4)可以重新进行表述:

f ( t ) = A 0 + ∑ n = 1 n = ∞ 1 2 a n ( e j w t + e − j w t ) − 1 2 j b n ( e j w t − e − j w t ) = ∑ n = − ∞ ∞ 1 2 ( a n − j b n ) e j w t (1-11) \begin{aligned}f(t)&=A_0+\sum_{n=1}^{n=\infty}{1\over2}a_n(e^{jwt}+e^{-jwt})-{1\over2}jb_n(e^{jwt}-e^{-jwt})\\ &=\sum_{n=-\infty}^{\infty} {1\over 2}(a_n-jb_n)e^{jwt} \end{aligned}\tag{1-11} f(t)=A0+n=1n=21an(ejwt+ejwt)21jbn(ejwtejwt)=n=21(anjbn)ejwt(1-11)

c n = 1 2 a n − j b n c_n={1\over 2}a_n-jb_n cn=21anjbn则公式(1-11)为:

f ( t ) = ∑ n = − ∞ ∞ c n e j w t (1-12) f(t)=\sum^{\infty}_{n=-\infty}c_ne^{jwt}\tag{1-12} f(t)=n=cnejwt(1-12)

值得注意的是 c n c_n cn是复数,其实部 a n a_n an是对应频率的 c o s ( n w t ) cos(nwt) cos(nwt)的幅值,虚部负数即 b n b_n bn是对应频率 s i n ( n w t ) sin(nwt) sin(nwt)的幅值。或者可以说 c n c_n cn是该频率分量 c o s ( n w t + ϕ ) cos(nwt+\phi) cos(nwt+ϕ)的幅值大小。

可以通过计算 c n c_n cn来分析某个信号 f ( t ) f(t) f(t)的频率组成成分:

c n = 1 T ∫ − T 2 T 2 f ( t ) { c o s ( n w t ) − j s i n ( n w t ) } = 1 T ∫ − T 2 T 2 f ( t ) e − j w t (1-13) \begin{aligned}c_n&={1\over T}\int_{-T\over 2}^{T\over 2} f(t) \{cos(nwt)-jsin(nwt) \}\\ &={1\over T}\int_{-T\over 2}^{T\over 2} f(t)e^{-jwt}\end{aligned}\tag{1-13} cn=T12T2Tf(t){cos(nwt)jsin(nwt)}=T12T2Tf(t)ejwt(1-13)

以上的分析是基于信号为周期信号的情况时得出的结论。但是倘若信号为非周期信号,即 T = ∞ T=\infty T=,由公式(1-6)(1-7)可知,此时的频率分量系数都会趋近于0,所以 c n c_n cn也会趋近于0。此时该系数会变得没有意义。

针对以上问题,可以通过在 c n c_n cn前乘周期T来解决,无穷小的数乘无穷大的数会变成一个有限数。即:

c n T = ∫ − T 2 T 2 f ( t ) e − j w t d t (1-14) c_nT=\int_{-T\over 2}^{T\over 2}f(t)e^{-jwt}dt\tag{1-14} cnT=2T2Tf(t)ejwtdt(1-14)

F ( w ) = c n T F(w)=c_nT F(w)=cnT为频谱密度,代表的是对应单位频率分量幅度的相对大小。此时 F ( w ) F(w) F(w)成为傅里叶变化,其的计算式为:

F ( w ) = ∫ − ∞ ∞ f ( t ) e − j w t d t (1-15) F(w)=\int_{-\infty}^{\infty}f(t)e^{-jwt}dt\tag{1-15} F(w)=f(t)ejwtdt(1-15)

若信号长度是有限的,则傅里叶变换仍然适用,此时其积分范围可以是信号的非零部分。

F ( w ) = ∫ t 1 t 2 f ( t ) e − j w t d t (1-16) F(w)=\int_{t_1}^{t_2}f(t)e^{-jwt}dt\tag{1-16} F(w)=t1t2f(t)ejwtdt(1-16)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值