拉普拉斯变换笔记(2)

拉普拉斯变换的收敛域(ROC)与逆变换(ILT)

1.是否可积即是否收敛(如果可收敛,面积/拉氏值即为收敛域)

(1)收敛的条件:e^(-jwt)积分为振荡函数

 (2)常系数线性微分方程对应线性时不变系统,其分析步骤有三:

 (3)拉氏逆变换(ILT)的方法:

传递函数的极点:s=-4,s=-1;

求解过程中令s=-4,s=-1解出A,B;


传递函数(Transfer Function)与拉普拉斯变换

传递函数

以水的流入作为输入,以水箱的高度作为输出,通过对该模型的微分方程进行拉普拉斯变换,我们可以得到 \((s+g/R)X(s)=U(s)\) 这样的方程,经过移项我们可以得到系统输出与输入的比值,而这个比值的表达式就是这个系统的传递函数

二端口网络输入和输出之间会存在某种数学关系,这个关系就是所谓的传递函数,也是这个二端口网络的数学模型G(s)。

特别注意,G(s)在表现形式上和F(s)一样,都是关于s的函数,但其物理意义不一样:F(s)表示信号的数值变化规律,G(s)表示的是传递网络输入输出信号之间的数学计算关系,即输入信号是通过怎样的运算过程(数乘、积分、微分等)得到输出信号的。


稳定性分析

\frac{dx}{dt}为0时,我们可以认为这个点为平衡点

 

 A为不稳定,B为临界稳定,始终有界,没有衰减,C为稳定点,最终衰减为零

如果输入有界,输出也为有界,称为BIBO稳定(如果一个系统在一个有界输入或扰动作用下其响应是有限的。),此处B、C都为皆为此。

稳定性分析

1、首先应该明确分析对象,

2、给系统输入一个单位冲击(相当于输入),单位冲击是宽度为0,面积为1的理想函数。其拉式变换为1,其系统输出为G(s)。

3、研究开环或者闭环的传递函数G(s)本身就可以分析稳定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值