排列组合二项定理 知识要点

数学知识 专栏收录该内容
11 篇文章 0 订阅

一、两个原理.

1.乘法原理、加法原理.

2.可以有重复元素的排列.

m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = mn.. 例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?   (解:种)

二、排列.

1.对排列定义的理解.

定义:n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.

相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.

排列数.n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.n个不同元素中取出m个元素的一个排列数,用符号表示.

排列数公式:    注意:  规定0! = 1      

      规定

2.含有可重元素的排列问题对含有相同元素求排列个数的方法是:设重集Sk个不同元素a1a2,…...an其中限重复数为n1n2……nk,且n = n1+n2+……nk , S的排列个数等于.    

例如:已知数字322,求其排列个数又例如:数字555、求其排列个数?其排列个数

三、组合.

1.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.

组合数公式:

两个公式:  ②

n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出 n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.

(或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有

根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C,如果不取这一元素,则需从剩余n个元素中取出m个元素,所以共有C种,依分类原理有.

排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是排成一排,后者是并成一组,前者有顺序关系,后者无顺序关系.

⑸①几个常用组合数公式

常用的证明组合等式方法例.

i.裂项求和法.如:(利用

ii.导数法iii.数学归纳法.  iv.倒序求和法.

v.递推法(即用递推)如:.

vi.构造二项式.如: 

证明:这里构造二项式其中的系数,左边为

,而右边

四、排列、组合综合.

1.I.排列、组合问题几大解题方法及题型:

直接法.  

排除法.

捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们局部的排列.它主要用于解决元素相邻问题

例如,一般地,n个不同元素排成一列,要求其中某个元素必相邻的排列有.其中是一个整体排列,而则是局部排列”.

又例如①n个不同座位,AB两个不能相邻,则有排列法种数为.  

n件不同商品,若其中AB排在一起有.

 

 n件不同商品,若其中有二件要排在一起有.

注:①③区别在于①是确定的座位,有种;而③的商品地位相同,是从n件不同商品任取的2个,有不确定性.

插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决元素不相邻问题”.

例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n – m+1≥m, m≤时有意义.

占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用先特殊后一般的解题原则.

调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m个元素次序一定,共有种排列方法.

例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?

解法一:(逐步插空法)(m+1)(m+2…n = n/ m!;解法二:(比例分配法).

平均法:若把kn个不同元素平均分成k组,每组n个,共有.

例如:从1234中任取2个元素将其平均分成2组有几种分法?有(平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?(

注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有,当n – m+1 ≥m, m≤时有意义.

隔板法:常用于解正整数解组数的问题.

例如:的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为显然,故()是方程的一组解.反之,方程的任何一组解,对应着惟一的一种在12个球之间插入隔板的方式(如图                所示)故方程的解和插板的方法一一对应.即方程的解的组数等于插隔板的方法数.

注意:若为非负数解的x个数,即用等于,有,进而转化为求a的正整数解的个数为 .

⑨定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有.

例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?

固定在某一位置上:;不在某一位置上:(一类是不取出特殊元素a,有,一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)

指定元素排列组合问题.

i.n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。先CA策略,排列;组合.

ii.n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内。先CA策略,排列;组合.

iiin个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素。先CA策略,排列;组合.

II.排列组合常见解题策略:

特殊元素优先安排策略;

合理分类与准确分步策略;

排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);

正难则反,等价转化策略;

相邻问题插空处理策略;

不相邻问题插空处理策略;

定序问题除法处理策略;

分排问题直排处理的策略;

小集团排列问题中先整体后局部的策略;

构造模型的策略.

2.组合问题中分组问题和分配问题.

均匀不编号分组:将n个不同元素分成不编号的m组,假定其中r组元素个数相等,不管是否分尽,其分法种数为(其中A为非均匀不编号分组中分法数).如果再有K组均匀分组应再除以.

例:10人分成三组,各组元素个数为244,其分法种数为.若分成六组,各组人数分别为112222,其分法种数为

非均匀编号分组: n个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为

例:10人分成三组,各组人数分别为235,去参加不同的劳动,其安排方法为:.

若从10人中选9人分成三组,人数分别为234,参加不同的劳动,则安排方法有

均匀编号分组:n个不同元素分成m组,其中r组元素个数相同且考虑各组间的顺序,其分法种数为.

例:10人分成三组,人数分别为244,参加三种不同劳动,分法种数为 

非均匀不编号分组:将n个不同元素分成不编号的m组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为

例:10人分成三组,每组人数分别为235,其分法种数为若从10人中选出6人分成三组,各组人数分别为123,其分法种数为.

五、二项式定理.

1.二项式定理:.展开式具有以下特点:

    项数:共有项;

②系数:依次为组合数

每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.

二项展开式的通项.展开式中的第项为:.

二项式系数的性质.

在二项展开式中与首未两项等距离的两项的二项式系数相等;

二项展开式的中间项二项式系数最大.

I.n是偶数时,中间项是第项,它的二项式系数最大;

II.n是奇数时,中间项为两项,即第项和第项,它们的二项式系数最大.

系数和:   

附:一般来说为常数)在求系数最大的项或最小的项时均可直接根据性质二求解.时,一般采用解不等式组的系数或系数的绝对值)的办法来求解.

如何来求展开式中含的系数呢?其中视为二项式,先找出含有的项,另一方面在中含有的项为,故在中含的项为.其系数为.

2.近似计算的处理方法.

a的绝对值与1相比很小且n不大时,常用近似公式,因为这时展开式的后面部分很小,可以忽略不计。类似地,有但使用这两个公式时应注意a的条件,以及对计算精确度的要求.

 

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页

打赏

持续学习刻意练习

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值