移动自组网中基于图神经元的在线威胁检测方案
随着网络技术的不断发展,移动自组网(MANET)和无线传感器网络(WSN)在众多领域得到了广泛应用。然而,这些网络面临着各种安全威胁,如分布式拒绝服务(DDoS)攻击、自私节点行为等。为了有效检测和应对这些威胁,一种基于图神经元(GN)的在线威胁检测方案应运而生。
1. 移动自组网与威胁检测概述
移动自组网是一种去中心化的网络,由无线移动节点通过自我协作形成。它没有固定的节点配置和协调,节点能够自我组织成移动网络。但MANET也面临诸多问题,如拓扑变化时的路由问题、无线通信问题、能量限制以及节点计算资源普遍缺乏等。由于其无线和移动的特性,MANET容易受到各种安全威胁,如自私节点、DDoS攻击和流量干扰等。
传统的基于IP的有线网络入侵检测策略并不适用于MANET,因此需要专门的入侵检测方案(IDS)。目前已有多种IDS被提出,如Huang和Lee提出的基于集群的合作检测方案、Sun等人引入的基于区域的入侵检测系统以及Xie和Hui讨论的基于自然免疫系统的防护方案。
2. 图神经元(GN)
2.1 关联记忆概念
关联记忆(AM)源自神经网络模型,在许多应用领域都有应用。Hopfield网络是一种广泛使用的无监督学习技术,常用于模式分析和优化中的关联(或内容可寻址)记忆实现,但该模型的可扩展性有限,受网络中处理/存储节点数量的限制。反向传播网络能快速召回,但添加新模式时的训练成本过高。理想的关联记忆设备应具备简单的一次性训练和快速检索功能,而图神经元(GN)正是为克服关联记忆设备的可扩展性问题和降低训练开销而设计的。