机器学习模型的安全威胁与防御策略
1. 机器学习安全概述
在机器学习(ML)的整个生命周期中,从构思行业级的 ML 用例到将其提供给客户,存在着各种不同类型的风险。在 ML 生命周期的每一步,让执行团队以及技术、业务和监管专家参与进来,对交付成果进行验证、审计和认证是非常重要的,这有助于推动项目进入下一阶段。同时,模型设计、压缩、存储和部署等方面的关键因素,以及不同级别的指标,对于确定攻击可能性和不公平结果的风险至关重要。
2. 技术要求
为了进行后续的操作,需要安装 Python 3.8 以及以下 Python 包:
pip install adversarial-robustness-toolbox
pip install syft==0.2.9
pip install Pyfhel
pip install secml
git clone https://github.com/privacytrustlab/ml_privacy_meter
pip install -r requirements.txt
pip install -e
pip install diffprivlib
pip install tensorflow-privacy
pip install mia
pip install foolbox
同时,还需要安装 Keras 2.7.0 和 TensorFlow 2.7.0。
3. 系统和模型设计/架构阶段的研究与规划
3.1 攻击步骤
在模型设计、架构规划和概念化阶段,攻击