MATLAB计算方法:方程求解、积分计算与动力系统分析
1. 方程求解
在方程求解方面,涉及多种类型的方程和求解方法。
- 三角函数相关方程 :对于方程(\sin x - \frac{x}{10\pi} = 0),由于(\vert\sin x\vert\leq1),可知(\vert x\vert\leq10\pi)。在(2\pi)的区间内有两个解,在(\vert x\vert\leq10\pi)的范围内,正(x)有九个解,负(x)有九个解,还有一个零解。通过假位置法,先连接((\frac{\pi}{2},\frac{19}{20}))和((\pi,-\frac{1}{10}))得到直线方程,求出(y = 0)时(x = \pi - \frac{\pi}{21}),代入原方程为正,再调整直线方程,最终得到近似解(x = 3.0443),验证了方法的收敛性。
- 其他方程 :
- 方程(x = \cos x)只有一个正实数解,取初始猜测值(\frac{\pi}{2}),通过迭代公式(x_{i + 1} = x_i - \frac{\cos x_i - x_i}{-\sin x_i - 1}),经过两次迭代分别得到(x = 0.7853)和(x = 0.7395)。
- 对于方程(\cos(40x) + x^4 = 0),函数为偶函数,(\cos(40x) = -1)时(x)最大值为((\frac{1}{40})^{\frac{1}{4}} = 0.3976),总共有12个零点,分布在(-0.3976)到(+0.3976)之间。通过二分法逐步缩小根的范围,如在(x = 0)和(x = \frac{\pi}{40