Hyperspectral imagery dataset

Indian Pines

Hello World
This scene was gathered by AVIRIS sensor over the Indian Pines test site in North-western Indiana and consists of 145 × \times × 145 pixels and 224 spectral reflectance bands in the wavelength range 0.4–2.5 10 − 6 ^{-6} 6 meters. This scene is a subset of a larger one. The Indian Pines scene contains two-thirds agriculture, and one-third forest or other natural perennial vegetation. There are two major dual lane highways, a rail line, as well as some low density housing, other built structures, and smaller roads. Since the scene is taken in June some of the crops present, corn, soybeans, are in early stages of growth with less than 5% coverage. The ground truth available is designated into sixteen classes and is not all mutually exclusive. We have also reduced the number of bands to 200 by removing bands covering the region of water absorption: [104-108], [150-163], 220. Indian Pines data are available through Pursue’s univeristy MultiSpec site.

Download MATLAB data files: Indian Pines (6.0 MB) | corrected Indian Pines (5.7 MB) | Indian Pines groundtruth (1.1 KB)
(链接:https://pan.baidu.com/s/1JZOkoUcG8mH42dSznSiYHw 提取码:xtfc )
Groundtruth classes for the Indian Pines scene and their respective samples number

#ClassSample
1Alfalfa46
2Corn-notill1428
3Corn-mintill830
4Corn237
5Grass-pasture483
6Grass-trees730
7Grass-pasture-mowed28
8Hay-windrowed478
9Oats 20
10Soybean-notill972
11Soybean-mintill2455
12Soybean-clean593
13Wheat205
14Woods1265
15Buildings-Grass-Trees-Drives386
16Stone-Steel-Towers93

Sample band of Indian Pines dataset
Groundtruth of Indian Pines dataset

Salinas scene

This scene was collected by the 224-band AVIRIS sensor over Salinas Valley, California, and is characterized by high spatial resolution (3.7-meter pixels). The area covered comprises 512 lines by 217 samples. As with Indian Pines scene, we discarded the 20 water absorption bands, in this case bands: [108-112], [154-167], 224. This image was available only as at-sensor radiance data. It includes vegetables, bare soils, and vineyard fields. Salinas groundtruth contains 16 classes.
Download MATLAB data files: Salinas (26.3 MB) | corrected Salinas (25.3 MB) | Salinas groundtruth (4.2 KB)
链接:https://pan.baidu.com/s/1_dBhy05UEnEZHfMaGEptvA 提取码:3a5a
Groundtruth classes for the Salinas scene and their respective samples number

#ClassSample
1Brocoli_green_weeds_12009
2Brocoli_green_weeds_23726
3Fallow1976
4Fallow_rough_plow1394
5Fallow_smooth2678
6Stubble3959
7Celery3579
8Grapes_untrained11271
9Soil_vinyard_develop6203
10Corn_senesced_green_weeds3278
11Lettuce_romaine_4wk1068
12Lettuce_romaine_5wk1927
13Lettuce_romaine_6wk916
14Lettuce_romaine_7wk1070
15Vinyard_untrained7268
16Vinyard_vertical_trellis1807

Salinas-A scene

An small subscene of Salinas image, denoted Salinas-A, is usually used too. It comprises 86*83 pixels located within the same scene at [samples, lines] = [591-676, 158-240] and includes six classes.
Download MATLAB data files: Salinas-A (1.5 MB) | corrected Salinas-A (1.5 MB) | Salinas-A groundtruth (587 Bytes)
链接:https://pan.baidu.com/s/1_ZmveAi_356DVY1UWl_Lpg 提取码:d9jj
Groundtruth classes for the Salinas-A scene and their respective samples number

#ClassSample
1Brocoli_green_weeds_1391
2Corn_senesced_green_weeds1343
3Lettuce_romaine_4wk616
4Lettuce_romaine_5wk1525
5Lettuce_romaine_6wk674
6Lettuce_romaine_7wk799

Pavia Centre and University

These are two scenes acquired by the ROSIS sensor during a flight campaign over Pavia, nothern Italy. The number of spectral bands is 102 for Pavia Centre and 103 for Pavia University. Pavia Centre is a 10961096 pixels image, and Pavia University is 610610 pixels, but some of the samples in both images contain no information and have to be discarded before the analysis. The geometric resolution is 1.3 meters. Both image groundtruths differenciate 9 classes each. It can be seen the discarded samples in the figures as abroad black strips.
Pavia scenes were provided by Prof. Paolo Gamba from the Telecommunications and Remote Sensing Laboratory, Pavia university (Italy).

Pavia Centre scene

Download MATLAB data files: Pavia Centre (123.6 MB) | Pavia Centre groundtruth (34.1 KB)
链接:https://pan.baidu.com/s/155pHOZLWJse4ylZCpGhILg 提取码:edxv
Groundtruth classes for the Pavia centre scene and their respective samples number

#ClassSample
1Water824
2Trees820
3Asphalt816
4Self-Blocking Bricks808
5Bitumen808
6Tiles1260
7Shadows476
8Meadows824
9Bare Soil820

Pavia University scene

Download MATLAB data files: Pavia University (33.2 MB) | Pavia University groundtruth (10.7 KB)
链接:https://pan.baidu.com/s/1LWcf4ogMCgjdYEfBSy5-eA 提取码:jtmv
Groundtruth classes for the Pavia University scene and their respective samples number

#ClassSample
1Asphalt6631
2Meadows18649
3Gravel2099
4Trees3064
5Painted metal sheets1345
6Bare Soil5029
7Bitumen1330
8Self-Blocking Bricks3682
9Shadows947

Cuprite

(1)
This data sets can be retrieved from AVIRIS NASA site. Among the many datasets available, the .mat archive posted here corresponds to the f970619t01p02_r02_sc03.a.rfl reflectance file.
Download MATLAB data file: Cuprite (95.3 MB)
链接:https://pan.baidu.com/s/1GYeFhQ4H5x3yBudFJA4FSA 提取码:bzod
(2)
Cuprite (available form website) is the most benchmark dataset for the hyperspectral unmixing research that covers the Cuprite in Las Vegas, NV, U.S. There are 224 channels, ranging from 370 nm to 2480 nm. After removing the noisy channels (1–2 and 221–224) and water absorption channels (104–113 and 148–167), we remain 188 channels. Aregion of 250 x 190 pixels is considered, where there are 14 types of minerals. Since there are minor differences between variants of similar minerals, we reduce the number of endmembers to 12, which are summarized as follows “#1 Alunite”, “#2 Andradite”, “#3 Buddingtonite”, “#4 Dumortierite”, “#5 Kaolinite1”, “#6 Kaolinite2”, “#7 Muscovite”, “#8 Montmorillonite”, “#9 Nontronite”, “#10 Pyrope”, “#11 Sphene”, “#12 Chalcedony”.
The ground truth for Cuprite (12 endmembers).
Dataset:
Data in the Envi format with 224 channels: Cuprite_S1_F224.zip (14.0Mb)
Data in the Envi format with 188 channels: Cuprite_S1_R188.zip (12.9Mb)
Data in the Matlab format with 224 channels: Cuprite_S1_F224.mat (15.4Mb)
Data in the Matlab format with 188 channels: Cuprite_S1_R188.mat (13.7Mb)
Ground Truth: GroundTruth (438Kb) only includes GT:endmembers.

Kennedy Space Center (KSC)

The NASA AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) instrument acquired data over the Kennedy Space Center (KSC), Florida, on March 23, 1996. AVIRIS acquires data in 224 bands of 10 nm width with center wavelengths from 400 - 2500 nm. The KSC data, acquired from an altitude of approximately 20 km, have a spatial resolution of 18 m. After removing water absorption and low SNR bands, 176 bands were used for the analysis. Training data were selected using land cover maps derived from color infrared photography provided by the Kennedy Space Center and Landsat Thematic Mapper ™ imagery. The vegetation classification scheme was developed by KSC personnel in an effort to define functional types that are discernable at the spatial resolution of Landsat and these AVIRIS data. Discrimination of land cover for this environment is difficult due to the similarity of spectral signatures for certain vegetation types. For classification purposes, 13 classes representing the various land cover types that occur in this environment were defined for the site.

Take a fast look to the data!
Download MATLAB data file: Kennedy Space Center (KSC) (56.8 MB)
Download MATLAB ground truth file: KSC gt (3.2 kB)
链接:https://pan.baidu.com/s/11ojslF2aRQKeBcxW8bM_5g 提取码:pdu3

Botswana

The NASA EO-1 satellite acquired a sequence of data over the Okavango Delta, Botswana in 2001-2004. The Hyperion sensor on EO-1 acquires data at 30 m pixel resolution over a 7.7 km strip in 242 bands covering the 400-2500 nm portion of the spectrum in 10 nm windows. Preprocessing of the data was performed by the UT Center for Space Research to mitigate the effects of bad detectors, inter-detector miscalibration, and intermittent anomalies. Uncalibrated and noisy bands that cover water absorption features were removed, and the remaining 145 bands were included as candidate features: [10-55, 82-97, 102-119, 134-164, 187-220]. The data analyzed in this study, acquired May 31, 2001, consist of observations from 14 identified classes representing the land cover types in seasonal swamps, occasional swamps, and drier woodlands located in the distal portion of the Delta.

Take a fast look to the data!
Download MATLAB data file: Botswana (78.9 MB)
Download MATLAB ground truth file: Botswana gt (4.0 kB)
链接:https://pan.baidu.com/s/10QnU9V9OvDYppb4jmMkUKg 提取码:14ct

Washington DC MALL

The figure here shows a simulated color IR view of an airborne hyperspectral data flightline over the
Washington DC Mall provided with the permission of Spectral Information Technology Application Center of
Virginia who was responsible for its collection. The sensor system used in this case measured pixel response in 210 bands in the 0.4 to 2.4 µm region of the visible and infrared spectrum. Bands in the 0.9 and 1.4 µm region where the atmosphere is opaque have been omitted from the data set, leaving 191 bands. The data set contains 1208 scan lines with 307 pixels in each scan line. It totals approximately 150 Megabytes. The image at left was made using bands 60, 27, and 17 for the red, green, and blue colors respectively.
假彩色图
191 Band Hyperspectral Image: HYDICE image of Washington DC Mall
(1) Washington DC Mall Image (145 MB)
链接:https://pan.baidu.com/s/1t1IjuQZZ0k-2GSB_xzROCQ 提取码:uogr
(2) Wavelengths for HYDICE Data
链接:https://pan.baidu.com/s/1-k7IZP_RXXNdx1bXaIAS-g 提取码:ub8i

DATASETS FOR UNMIXING

It needs to be mentioned that all these datasets are from this website: http://www.escience.cn/people/feiyunZHU/Dataset_GT.html

Four real hyperspectral images, i.e. Samson, Jasper Ridge, Urban and Cuprite.
The above picuture shows four real hyperspectral images. We give the real dataset in the format of “.img” (Envi) and “.mat” (Matlab). Besides, we provide the corresponding ground truths, which are achieved via the method provided in [SenJia1, SenJia2,SS-NMF].

1: Samson

Samson is a simple dataset that is available from the website. In this image, there are 952x 952 pixels. Each pixel is recorded at 156 channels covering the wavelengths from 401 nm to 889 nm. The spectral resolution is highly up to 3.13 nm. As the original image is too large, which is very expensive in terms of computational cost, a region of 95 x 95 pixels is used. It starts from the (252,332)-th pixel in the original image. This data is not degraded by the blank channel or badly noised channels. Specifically, there are three targets in this image, i.e. “#1 Soil”, “#2 Tree” and “#3 Water” respectively.
Samson and its ground truths (GT:abundances and GT:endmembers).
Fig. Samson and its ground truths (GT:abundances and GT:endmembers).
Dataset:
(1) Data in the Envi format with 156 channels: Data_Envi.zip (1.47Mb)
(2) Data in the Matlab format with 156 channels: Data_Matlab.zip (3.41Mb)
(3) Ground Truth: GroundTruth.zip (275Kb) includes GT:abundances and GT:endmembers.
链接:https://pan.baidu.com/s/1tkXz4PyuMubwRjfmdrty6w 提取码:8pi3

Japser Ridge

Jasper Ridge is a popular hyperspectral data used in [enviTutorials, SS-NMF, DgS-NMF,RRLbS, L1-CENMF]. There are 512 x 614 pixels in it. Each pixel is recorded at 224 channels ranging from 380 nm to 2500 nm. The spectral resolution is up to 9.46nm. Since this hyperspectral image is too complex to get the ground truth, we consider a subimage of 100 x 100 pixels. The first pixel starts from the (105,269)-th pixel in the original image. After removing the channels 1–3, 108–112, 154–166 and 220–224 (due to dense water vapor and atmospheric effects), we remain 198 channels (this is a common preprocess for HU analyses). There are four endmembers latent in this data: “#1 Road”, “#2 Soil”, “#3 Water” and “#4 Tree”.
Jasper Ridge and its ground truth (GT:abundances and GT:endmembers).
Dataset:
Data in the Envi format with 198 channels: jasperRidge2_R198.zip (2.87Mb)
Data in the Envi format with 224 channels: jasperRidge2_F224.zip (2.98Mb)
Data in the Matlab format with 198 channels: jasperRidge2_R198.mat (2.84Mb)
Data in the Matlab format with 224 channels: jasperRidge2_F224.mat (3.01Mb)
Ground Truth: GroundTruth.zip (364Kb) includes GT:abundances and GT:endmembers.
链接:https://pan.baidu.com/s/1cn-Ubj_U66IUzqTofYqkZA
提取码:tcxa

Urban

Urban is one of the most widely used hyperspectral data used in the hyperspectral unmixing study. There are 307 x 307 pixels, each of which corresponds to a 2 x 2 m2area. In this image, there are 210 wavelengths ranging from 400 nm to 2500 nm, resulting in a spectral resolution of 10 nm. After the channels 1–4, 76, 87, 101–111, 136–153 and 198–210 are removed (due to dense water vapor and atmospheric effects), we remain 162 channels (this is a common preprocess for hyperspectral unmixing analyses). There are three versions of ground truth, which contain 4, 5 and 6 endmembers respectively, which are introduced in the ground truth.
Urban and its ground truths (4 endmember version).
Dataset:
(1) Data in the Envi format with 221 channels: Urban_F210.zip (19.5Mb)
(2) Data in the Matlab format with 162 channels: Urban_R162.mat (16.9Mb)
(3) Data in the Matlab format with 221 channels: Urban_F210.mat (21.8Mb)
Ground Truth: three versions, including 4, 5 and 6 endmembers respectively…
(1) 4 endmembers version: GroundTruth (3.7Mb). The 4 endmembers are “#1 Asphalt”, “#2 Grass”, “#3 Tree” and “#4 Roof” respectively.
(2) 5 endmembers version: GroundTruth (3.65Mb). The 5 endmembers are “#1 Asphalt”, “#2 Grass”, “#3 Tree”, “#4 Roof” and “#5 Dirt” respectively.
(3) 6 endmembers version: GroundTruth (3.92Mb). The 6 endmembers are “#1 Asphalt”, “#2 Grass”, “#3 Tree”, “#4 Roof”, “#5 Metal”, and “6 Dirt” respectively.
链接:https://pan.baidu.com/s/1eWxK_X-1m_tdZ6FlWqPxhA

HSI SYNTHESIS TOOLS for MATLAB (for Unmixing)

It needs to be mentioned that all these datasets are from the website:
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
Download the latest Hyperspectral Imagery Synthesis toolbox for MATLAB here: Download (41.74 Mb)
HSI SYNTHESIS TOOLS for MATLAB
This software is distributed under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The Synthesis tools package has been actually developed with MATLAB 7.4 software (http://www.mathworks.com/) and a licensed copy is needed to use it.
If you are using the Hyperspectral Imagery Synthesis toolbox for your scientific research, please reference it as follows:
Hyperspectral Imagery Synthesis (EIAs) toolbox.
Grupo de Inteligencia Computacional, Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), Spain. http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB

Copyright 2010 Grupo Inteligencia Computacional, Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU).
IC Synthetic Hyperspectral CollectionHere you can find a set of hyperspectral synthetic images generated by the “Synthesis tools” package. All these synthetic images have been generated using five selected endmembers from the USGS spectral library included in the “Synthesis tools” package (see figure above). Each image’s spatial dimensions are of 128x128 pixels and they have 431 spectral bands. The hyperspectral synthetic image collections are distributed in ZIP files containing five MAT files each. One of this MAT files corresponds to the free of noise hyperspectral synthetic image, and in the other four additive noise has been added to the synthetic image given a Signal to Noise Ratio (SNR) of 20, 40, 60 and 80db respectively.​
在这里插入图片描述
The IC Synthetic Hyperspectral Collections:
Legendre: download (247.4 Mb)
Spheric Gaussian Field: download (255.0 Mb)
Exponential Gaussian Field: download (256.2 Mb)
Rational Gaussian Field: download (256.5 Mb)
Matern Gaussian Field: download (255.2 Mb)

好的呀

高光谱成像(Hyperspectral Imaging)是一种能够获取物体反射、发射或透过光谱辐射信息的技术。与常规的彩色成像相比,高光谱成像并非仅能从红、绿、蓝三个波段提取信息,而是可以同时捕捉到数百个连续的波段。通过这些波段,可以获得更多细节和特征,进而对材料的组成、结构、特性等进行更精确的分析。 通过高光谱成像技术,可以应用于许多领域。在农业领域,可以利用高光谱成像来识别作物的健康状况、农药施用的效果等,进而提高农作物的产量和质量。在环境监测中,高光谱成像可以用于检测水体的水质、气溶胶的浓度、地表覆盖情况等,帮助提前预警环境污染问题。此外,在矿产勘探、地质灾害识别、气象预测等领域也有着广泛的应用。 高光谱成像技术的原理基于光谱学,利用传感器从大范围的光谱波段中收集和记录数据。这些数据经过处理和分析,可以生成一系列的超光谱图像,每一个像素代表一个具有特定光谱特征的物质。高光谱成像技术可以通过光谱信息的综合分析,提供详尽的物质识别、分类与定量分析。 虽然高光谱成像技术具有许多潜在的优势和应用价值,但也面临一些挑战。其中包括数据量庞大,需要高性能计算和存储设备来处理和存储大量的数据;同时,数据的预处理和分析也需要高级算法和方法支持。此外,高光谱成像设备本身的成本较高,加上成像时间较长,限制了其在某些领域的推广应用。但随着技术的不断发展和成本的降低,高光谱成像技术有望在更多领域发挥其重要作用。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值