模型案例:| 鸟类识别模型!

导读

2023年以ChatGPT为代表的大语言模型横空出世,它的出现标志着自然语言处理领域取得了重大突破。它在文本生成、对话系统和语言理解等方面展现出了强大的能力,为人工智能技术的发展开辟了新的可能性。同时,人工智能技术正在进入各种应用领域,在智慧城市、智能制造、智慧医疗、智慧农业等领域发挥着重要作用。

柴火创客2024年将依托母公司Seeed矽递科技在人工智能领域的创新硬件,与全球创客爱好者共建“模型仓”,通过“SenseCraft AI”平台可以让使用者快速部署应用体验人工智能技术!

本期介绍:模型案例:| 鸟类识别模型!

图像分类

图像分类是计算机视觉领域中的一项基本任务,其定义是将输入图像分配给预定义类别中的一个或多个。具体来说,图像分类系统接受一个图像作为输入,并输出一个或多个类别标签,这些标签描述了图像中的内容。

在图像分类中,通常使用有监督学习方法,这意味着训练数据集中的每个图像都已经被手动标记或注释了正确的类别。训练过程涉及学习从图像中提取特征(这些特征可能是颜色、形状、纹理、空间关系等),并基于这些特征来预测图像所属的类别。

为了实现图像分类,通常会使用深度学习技术,特别是卷积神经网络(Convolutional Neural Networks, CNNs)。CNNs 能够从原始像素中自动学习层次化的特征表示,这些特征表示对于图像分类任务非常有效。通过在大规模数据集上训练CNNs,可以获得具有出色分类性能的模型。

使用Keras进行图像分类

tf.keras 是用于构建和训练深度学习模型的 TensorFlow 高阶 API,它允许用户通过简单的Python代码来定义和训练深度学习模型。这使得即使对于初学者来说,也能快速上手并构建复杂的图像分类模型。

Keras的模块化设计允许用户将不同的神经网络层、优化器、损失函数等组件像搭积木一样组合在一起,从而构建出适合特定任务的模型。这种灵活性使得Keras非常适合于图像分类任务。

Keras提供了许多预训练的神经网络模型,如VGG、ResNet、Inception等。这些模型在大型数据集(如ImageNet)上进行了训练,并已经学习到了丰富的图像特征。用户可以直接使用这些预训练模型进行特征提取或微调,从而加速模型的训练过程并提高性能。

鸟类识别模型

该图像分类模型用于对麻雀和喜鹊两种鸟类的识别,采用TensorFlow Lite模型格式。

鸟类识别模型应用场景

在农业领域:可以通过鸟类识别模型,识别鸟类并进行驱鸟工作。

在航空领域:飞机场需要定期进行驱鸟工作,保障机场起降的安全。

动物保护领域:可以在野外设置鸟类喂食装置,保护珍稀鸟类物种;或者野外物种发现并进行相应的保护等。

鸟类识别Lite(INT8)类型模型文件,请在网盘中下载此模型

https://share.weiyun.com/OH0zQjim

在XIAOESP32S3Sense上部署此模型

  1. 打开SenseCraft AI,地址:SenseCraft AI (seeed-studio.github.io)


2、准备硬件,安装XIAOESP32S3摄像头扩展板,使用数据线一头连接到XIAO ESP32S3 Sense开发板,另一头连接到电脑的USB接口上,如下图所示。

动图封面

  1. 打开SenseCraft模型助手网站,单击右上角的“连接”按钮,填充串口连接窗口后点击“连接”按钮,如下图所示。

当“连接”变成红色的“断开连接”按钮时,表示连接成功了,如下图所示。

3、接着在“可用的AI模型”列表中向下拉动列表,找到“上传自定义AI模型”按钮,并单击此按钮,如下图所示。

4、弹出“自定义AI模型”窗口,填写模型名称、添加下载的模型文件、单击“新增物体”设置2个识别标签(注意2个标签的名称顺序不能写错,分别是MAGPIE和SPARROW),填写完成后单击“发送模型”按钮,如下图所示。

5、等待几秒钟上传成功后,这时会出现摄像头实时预览窗口并推理出结果,如下图所示。

XIAO ESP32S3 Sense 套装介绍

XIAO ESP32S3(Sense)

强大的 MCU 板:集成ESP32S3 32 位双核 Xtensa 处理器芯片,运行频率高达 240 MHz,安装多个开发端口,支持 Arduino/MicroPython

高级功能:可拆卸OV2640相机传感器,分辨率为1600*1200,兼容OV5640相机传感器,集成附加数字麦克风

超强内存,带来更多可能性:提供 8MB PSRAM 和 8MB 闪存,支持 SD 卡插槽,用于外部 32GB FAT 内存

出色的射频性能:支持2.4GHz Wi-Fi和BLE双无线通信,连接U.FL天线时支持100m+远程通信

拇指大小的紧凑型设计:21 x 17.5mm,采用XIAO的经典外形,适用于可穿戴设备等空间有限的项目

来自 SenseCraft Al 的用于无代码部署的预训练 Al 模型

原型设计

柴火创客一直致力于将先进技术带到社区,通过社区伙伴或高校创新训练营的形式传授新的知识,新的技术、新的理念。

本期介绍河北农业大学创客俱乐部的学生团队,利用鸟类识别模型,设计一个AI驱鸟装置,通过摄像头和TFT显示屏可以通过视频实时对鸟类识别并控制舵机。

视频演示

添加视频

团队介绍

领取社区优惠券

扫码领取XIAO ESP32S3(Sense)套装优惠卷

写在最后

SenseCraft-AI平台的模型仓数量还很少,但是好消息是它支持自定义模型上传并输出推理结果,平台会逐渐增加模型仓的数量,敬请关注!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值