基于深度学习鸟类识别系统设计与实现

181 篇文章 0 订阅
160 篇文章 0 订阅

基于深度学习鸟类识别系统设计与实现

摘要:本论文设计并实现了一个基于深度学习技术的鸟类识别系统。该系统利用 TensorFlow 和 PyTorch 深度学习框架构建了一个高效的鸟类识别模型,并将 Flask 框架作为系统的后台框架,提供了一个用户友好的界面以及强大的后端支持。在系统设计过程中,我们采用了以下关键步骤:首先,收集了包含各种不同鸟类的图像数据集,并对数据进行预处理和增强;其次,选择了经典的深度学习模型架构,如 ResNet、VGG 等,并利用迁移学习技术对这些模型进行微调,以适应鸟类识别任务;然后,利用收集到的数据集对模型进行训练,并通过验证集对模型进行评估和调优;最后,将训练好的模型集成到 Flask 后台框架中,并通过简单而直观的用户界面提供鸟类识别服务。

实验结果表明,我们设计的鸟类识别系统在准确性和性能方面取得了令人满意的成绩。通过对多个鸟类图像进行测试,系统表现出良好的泛化能力和准确性。此外,我们还对系统进行了性能测试,并发现系统能够在短时间内快速响应用户请求,具有较高的实用性和可用性。

总的来说,本论文所设计的基于深度学习的鸟类识别系统具有较高的准确性、性能和用户友好性,为鸟类保护、生态研究等领域提供了一种有效的技术手段和工具。

关键词:深度学习;鸟类识别;TensorFlow;Flask

Design and implementation of bird recognition system based on deep learning

Abstract: This paper designs and implements a bird recognition system based on deep learning technology. The system uses TensorFlow and PyTorch deep learning frameworks to build an efficient bird recognition model, and uses Flask framework as the background framework of the system, providing a user-friendly interface and strong back-end support. In the system design process, we adopted the following key steps: First, we collected the image data set containing a variety of different birds, and pre-processed and enhanced the data; Secondly, we choose the classical deep learning model architecture, such as ResNet, VGG, etc., and use transfer learning technology to fine-tune these models to adapt to the bird recognition task. Then, the collected data set is used to train the model, and the validation set is used to evaluate and tune the model. Finally, the trained model is integrated into the Flask background framework and provides bird recognition services through a simple and intuitive user interface.

The experimental results show that the bird recognition system we designed has achieved satisfactory results in terms of accuracy and performance. By testing multiple bird images, the system shows good generalization ability and accuracy. In addition, we also conducted performance tests on the system, and found that the system can respond to user requests quickly in a short time, with high practicality and availability.

In general, the deep learning-based bird recognition system designed in this paper has high accuracy, performance and user friendliness, and provides an effective technical means and tools for bird protection, ecological research and other fields.

Keywords: Deep learning; Bird identification; TensorFlow; Flask

1 绪论

1.1研究背景与现状

鸟类识别系统是一种利用深度学习技术对鸟类图像进行自动分类和识别的系统。该系统的研究背景和现状可以从以下几个方面来介绍:

鸟类是生物多样性中的重要组成部分,对鸟类的识别和监测对于生态环境保护和鸟类资源管理至关重要。随着深度学习技术的不断发展和普及,利用深度学习进行图像分类和识别已经成为了一种有效的方法。近年来,出现了一些针对鸟类图像的大规模数据集,如CUB-200-2011、Birdsnap等,这些数据集为鸟类识别系统的研究提供了基础数据支持。研究者们利用深度学习技术,尤其是卷积神经网络(CNN),在鸟类识别领域取得了一系列重要进展。常用的模型包括ResNet、Inception、VGG等。鉴于数据集的限制,迁移学习成为了鸟类识别系统中常用的技术之一。通过在大规模图像数据集上预训练模型,然后在鸟类数据集上进行微调,可以有效提升模型性能。鸟类识别系统已经开始在实际应用中得到部署,例如用于自然保护区的鸟类监测、鸟类研究等领域。鸟类识别系统的性能受限于数据集的质量和规模,因此构建更大规模、更丰富多样的鸟类数据集是未来的一个重要方向。在复杂的自然环境中进行鸟类识别面临着许多挑战,包括光照变化、背景干扰、姿态变化等。如何提高模型的鲁棒性和泛化能力是一个重要的研究方向。除了图像数据外,鸟类的声音、行为等信息也可以用于识别。因此,如何将多模态数据融合起来,提高识别系统的性能也是一个有待研究的方向。

综上所述,鸟类识别系统在深度学习技术的推动下取得了许多进展,但仍然面临着挑战和机遇,未来的发展方向包括数据集的构建、模型性能的提升以及多模态数据融合等方面。

1.2国内外研究现状

基于深度学习的鸟类识别系统在国内外都受到了广泛关注和研究。以下是国内外鸟类识别系统研究的一些现状:

国外研究现状:

许多国外研究团队致力于构建大规模的鸟类图像数据集,如CUB-200-2011、Birdsnap、iNaturalist等,这些数据集为鸟类识别系统的研究提供了基础。

挑战包括鸟类外观的巨大变化、不同种类之间的相似性以及自然环境中的光照和背景变化等。

许多研究采用深度卷积神经网络(CNN)作为主要的模型架构,例如ResNet、Inception、VGG等,以提高鸟类识别系统的性能。迁移学习和微调技术被广泛应用于鸟类识别系统,以在有限的数据集上训练有效的模型。国外的鸟类识别系统已经开始在实际应用中得到部署,例如用于自然保护区的鸟类监测、鸟类生态学研究等领域。

国内研究现状:

国内也涌现出一些鸟类图像数据集,如CNBC、北美鸟类图像库等,但相较于国外数据集规模较小。面临的挑战包括鸟类种类繁多、图像质量参差不齐以及数据标注成本高等问题。国内研究团队也采用深度学习模型进行鸟类识别研究,如使用ResNet、Inception等模型,并结合迁移学习和微调技术进行模型训练。

一些研究团队也尝试探索适合国内特点的鸟类识别模型和技术。在应用方面,国内也有一些鸟类识别系统被应用于生态环境保护、自然保护区管理等领域,但整体规模相对较小。国内的鸟类识别研究也在不断发展,一些高校、科研机构和企业积极开展相关研究和应用。

综上所述,国内外都在积极开展基于深度学习的鸟类识别系统研究,虽然国内在数据集规模和研究水平上相对落后于国外,但在应用和发展方面也有一定的进展和潜力。未来随着技术的进步和应用的推广,鸟类识别系统将会在生态保护、环境监测等领域发挥更大的作用。

1.3论文主要研究工作

基于深度学习的鸟类识别系统的论文通常涉及以下主要研究工作:

论文通常开始于构建一个包含各种鸟类图像的数据集。这可能涉及收集公开可用的鸟类图像数据集,或者自行采集图像并进行标注。

数据预处理包括图像大小标准化、颜色空间转换、数据增强(如随机裁剪、翻转、旋转、缩放等)以及标签的编码和处理。

论文会介绍选择的深度学习模型,通常是卷积神经网络(CNN),如ResNet、Inception、VGG等。选择模型时需要考虑模型的深度、参数量、计算效率等因素。有些论文可能会针对鸟类识别任务设计特定的网络结构或者进行模型微调,以适应该任务的特点。

论文会描述模型的训练过程,包括选择优化器、学习率调度策略、正则化技术等。模型训练通常会使用大量的数据,并可能采用迁移学习的方法,将在大规模数据集上预训练的模型参数作为初始化参数,以提高模型的泛化能力。

论文会详细描述模型在测试数据集上的性能表现,通常包括准确率、召回率、精确率等指标。有些论文还可能会进行与其他方法的比较实验,包括传统机器学习方法和其他深度学习方法。

最后,论文可能会讨论鸟类识别系统在实际应用中的潜在价值和展望,例如在自然保护、生态学研究、生物多样性监测等方面的应用前景。

这些是基于深度学习的鸟类识别系统论文中常见的研究工作,当然具体的研究内容和重点可能会因研究团队的实际需求和研究目标而有所不同。

2 技术总述

2.1 TensorFlow技术

TensorFlow 是由 Google 开发的一个开源机器学习框架,广泛应用于图像识别、自然语言处理、语音识别等领域。在 TensorFlow 中,图像识别技术是其中一个重要的应用方向,通常使用卷积神经网络(Convolutional Neural Networks,CNN)等深度学习模型来实现。

以下是 TensorFlow 中图像识别技术的一般流程和主要组成部分:

TensorFlow 提供了丰富的数据处理和增强工具,例如 tf.data API 可以用来构建输入数据管道,从文件中读取、解码和预处理图像数据。

数据预处理包括图像大小调整、归一化、裁剪、翻转、旋转等操作,以及标签的编码等。

TensorFlow 提供了多种构建深度学习模型的方式,包括使用 Keras、tf.keras、TensorFlow Estimator 等高级 API,也可以直接使用 TensorFlow 的低级 API 构建模型。

常用的图像识别模型包括卷积神经网络(CNN)、残差网络(ResNet)、Inception 系列网络等,可以根据任务需求选择合适的模型。

在 TensorFlow 中,可以使用内置的优化器(如 Adam、SGD)、损失函数(如交叉熵损失函数)、评估指标(如准确率、精确率、召回率等)来训练模型。

使用 TensorFlow 的自动微分功能可以方便地计算模型参数的梯度,从而实现反向传播和参数更新。

训练完成后,可以使用验证集或测试集对模型进行评估,查看其在未见过的数据上的性能表现。

可以根据评估结果对模型进行调优,如调整模型结构、学习率、正则化等超参数,以提高模型的泛化能力。

完成训练和调优后,可以将模型部署到生产环境中进行应用。TensorFlow 提供了多种部署方式,包括 TensorFlow Serving、TensorFlow Lite、TensorFlow.js 等,适用于不同的应用场景。

部署后的模型可以用于图像分类、对象检测、语义分割等图像识别任务,例如在医疗影像、智能监控、自动驾驶等领域中应用。

总的来说,TensorFlow 提供了丰富的工具和功能,支持从数据准备到模型构建、训练、评估和部署的端到端图像识别解决方案。

2.2 Flask技术

Flask 是一个使用 Python 编写的高级 Web 开发框架,它提供了一系列工具和功能来简化 Web 应用程序的开发过程。以下是 Flask 技术的综述:

Flask 遵循 MVC(Model-View-Controller)设计模式,它将应用程序划分为模型(Model)、视图(View)和控制器(Controller)三个组件。模型处理数据逻辑,视图负责呈现数据给用户,控制器处理用户输入并调度适当的操作。

Flask 的 ORM(Object-Relational Mapping)系统允许开发人员使用 Python 代码来管理数据库,而不必直接编写 SQL 查询。它提供了一个抽象接口,使开发人员能够轻松地与数据库进行交互,而无需关注底层细节。

Flask 使用 URL 路由机制来将请求映射到相应的视图函数。视图函数可以执行相应的逻辑,并返回要显示给用户的内容(如 HTML 页面或 JSON 数据)。

Flask 提供了强大的表单处理功能,可以方便地生成、验证和处理用户提交的表单数据。它提供了丰富的表单字段类型和验证器,使开发人员能够轻松地构建复杂的表单。

Flask 自动生成一个管理界面,使开发人员可以轻松地管理应用程序的后台内容。开发人员可以定义模型,并使用管理界面来执行 CRUD(创建、读取、更新、删除)操作。

总体而言,Flask 是一个功能强大且成熟的 Web 开发框架,它提供了许多工具和功能,使开发人员能够快速构建安全、可扩展和高性能的 Web 应用程序。它在许多领域都得到了广泛的应用,包括电子商务、社交网络、新闻门户等。

2.3 Mysql技术

MySQL 是一种流行的开源关系型数据库管理系统,它广泛用于Web应用程序中存储和管理数据。以下是 MySQL 技术的描述:

关系型数据库管理系统(RDBMS):MySQL 是一种关系型数据库管理系统,采用表格的形式来组织数据。用户可以通过 SQL(结构化查询语言)来查询、插入、更新和删除数据,实现高效的数据操作。

开源性:MySQL 是开源软件,用户可以免费获取并使用它。同时,MySQL 社区活跃,提供持续的更新和技术支持,使得 MySQL 成为许多开发者和组织的首选数据库管理系统之一。

跨平台性:MySQL 可以在多种操作系统上运行,包括 Windows、Linux、Mac 等,具有良好的跨平台性,适用于各种不同的应用场景。

高性能:MySQL 具有较高的性能表现,能够处理大规模数据操作和复杂查询。通过优化索引、查询语句和配置参数,可以进一步提升 MySQL 的性能。

可扩展性:MySQL 支持主从复制、分区表、分布式数据库等功能,可以实现数据库的水平和垂直扩展,以满足不同规模和需求的应用系统。

安全性:MySQL 提供各种安全特性,如用户认证、权限控制、数据加密等,保护数据库中的数据免受未经授权的访问和损坏。

事务支持:MySQL 支持事务处理,用户可以使用事务来确保数据库操作的一致性和完整性,从而避免数据异常和丢失。

存储引擎:MySQL 支持多种存储引擎,例如 InnoDB、MyISAM、Memory 等,每种存储引擎都有不同的特性和适用场景,用户可以根据需求选择合适的存储引擎。

总的来说,MySQL 是一款功能强大、稳定可靠的关系型数据库管理系统,适用于各种规模的应用程序,为用户提供高效、安全、可靠的数据存储和管理解决方案。

2.4 本章小结

本章主要识别了系统开发过程中使用到的技术点和框架,通过研究这些技术的原理后,在本设计中加以应用,包括Tensorflow技术,以及基于Flask框架的系统后台技术,通过预研上述技术点并加以应用从而开发出基于Tensorflow的鸟类识别系统。

3 鸟类识别系统的实现

3.1系统功能

通过前面的功能识别可以将鸟类识别观点抽取和鸟类识别系统的研究与实现的功能主要包括用户登录视频上传识别管理、图片上传识别等内容。

3.2可行性研究

通过对系统研究目标及内容的识别审察后,提出可行性方案,并对其进行论述。主要从技术可行性出发,再进一步识别经济可行性和操作可行性等方面。

3.2.1 经济可行性

开发系统所涉及到的资料,一般是在图书馆查阅,或是在网上进行查找收集。所需要的一些应用软件也都是在网上可以免费下载的,因此,开发成本是几乎为零。但是开发出来的系统,还是具有高效率,低成本,较高质量的。所以,从经济可行性的角度,该系统符合标准。

3.2.2 技术可行性

技术可行性是考虑在现有的技术条件下,能否顺利完成开发任务。以及判断现有的软硬件配置是否能满足开发的需求。而本系统采用的是Tensorflow技术开发框架,并非十分困难,所以在技术上是绝对可行的。此外,计算机硬件配置是完全符合发展的需要。

3.2.3 运行可行性

当前计算机信息化的知识已经十分普及了,现在的操作人员也都是对系统环境有很强的适应性,各类操作人员大都是有过培训补充的,因此完全不影响组织结构,所以在运行上也是可行的。

3.2.4 时间可行性

从时间上看,在大四的最后一个学期,在实习工作与完成毕设两件大事相交叉的时间里,结合之前学习的相关知识,并开发系统,时间上是有点紧,但是也不是完全没可能实现,通过这段时间的努力功能基本实现。

3.3 系统实现流程

基于Tensorflow的鸟类识别系统可以通过以下流程来实现:

1. 数据收集和准备阶段:

收集数据集:收集包含不同类别鸟类(如可回收物、厨余鸟类、有害鸟类等)的图像数据集。

数据标注:对数据集中的每张图像进行标注,确定其所属的鸟类类别。

数据预处理:对图像数据进行预处理,包括缩放、裁剪、增强等操作,以提高模型的泛化能力。

2. 模型选择和训练阶段:

选择Tensorflow模型:选择适合图像识别任务的Tensorflow模型,如Tensorflow。

模型构建:搭建Tensorflow模型结构,包括多个卷积层、池化层和全连接层,以便提取图像特征并进行识别。

模型训练:使用数据集对构建的Tensorflow模型进行训练,通过反向传播算法优化模型参数,使其能够准确识别不同类别的鸟类。

3. 模型评估和优化阶段:

模型评估:使用测试集对训练好的模型进行评估,计算准确率、召回率和F1 值等指标,评估模型的性能。

模型调优:根据评估结果对模型进行调优,如调整超参数、增加训练数据量等,以提升模型的识别效果。

4. 系统集成和部署阶段:

模型集成:将训练好的Tensorflow模型与鸟类识别系统进行集成,实现自动识别和识别功能。

系统部署:将集成后的系统部署到场景中,可以是智能鸟类桶、鸟类识别机器人等器材上,实现实时的鸟类识别识别和处理。

5. 系统应用和优化阶段:

系统应用:用户将家中产生的鸟类放入智能鸟类桶或通过摄像头拍摄,系统利用Tensorflow模型进行识别识别,并根据识别结果进行鸟类处理。

系统优化:持续监测系统运行效果,根据用户反馈和数据统计对系统进行优化和改进,提高鸟类识别的准确性和效率。

通过以上流程,基于Tensorflow的鸟类识别系统可以实现自动化、高效的鸟类识别识别,为家庭环境带来便利和环保效益。

3.4系统平台架构

在任何信息系统当中有价值的数据都是必不可少的重要部分,如何通过手上

的资源获取得到有价值的数据便是开发系统。首先需要考虑的问题根据系统的功

能设计数据获取和处理的流程以及其实现方法都已经基本上确定获取和处理流

程。

3-1 系统架构图

3.5 CNN程序设计

本文中如需识别目前鸟类识别,数据收集和标注:收集包含鸟类的图像数据,并进行标注,标注每个图像中的鸟类位置和类别信息。

对标注的数据进行预处理,包括图像大小调整、数据增强(如随机裁剪、旋转、翻转等)以及标签的转换(例如将标签转换为CNN格式)。

使用预处理后的数据,训练CNN模型。可以使用开源的CNNv3或Tensorflow代码库作为起点,并根据你的需求进行修改和调整。在训练过程中,需要设置相关的超参数,如学习率、批量大小、训练轮数等。

使用验证集或测试集对训练好的模型进行评估,计算模型的准确率、召回率等指标,判断模型在鸟类识别上的性能。

使用训练好的模型进行推理,即输入一张图像,通过模型得到目标检测结果,包括鸟类的位置和类别。可以使用模型预测结果进行进一步的应用,比如在图像中框出目标、输出检测结果等。

3-4 鸟类划分数据集代码

import osimport shutilimport random

# 设置随机种子

random.seed(42)

# 定义数据集目录

original_dataset_dir = 'path/to/original/dataset'  # 原始数据集目录

# 定义新目录

base_dir = 'path/to/dataset'  # 新的数据集目录

os.makedirs(base_dir, exist_ok=True)

train_dir = os.path.join(base_dir, 'train')  # 训练集目录

os.makedirs(train_dir, exist_ok=True)

validation_dir = os.path.join(base_dir, 'validation')  # 验证集目录

os.makedirs(validation_dir, exist_ok=True)

# 定义鸟类目录

bird_classes = ['class1', 'class2', 'class3']  # 鸟类分类

# 定义训练集和验证集比例

train_ratio = 0.8  # 训练集比例

validation_ratio = 0.1  # 验证集比例

test_ratio = 1 - train_ratio - validation_ratio  # 测试集比例

# 划分数据集for bird_class in bird_classes:

    class_dir = os.path.join(original_dataset_dir, bird_class)

    image_files = os.listdir(class_dir)

    random.shuffle(image_files)  # 随机打乱数据

    train_split = int(len(image_files) * train_ratio)

    validation_split = int(len(image_files) * (train_ratio + validation_ratio))

    train_files = image_files[:train_split]

    validation_files = image_files[train_split:validation_split]

    test_files = image_files[validation_split:]

    # 将图像复制到相应的目录

    for filename in train_files:

        src = os.path.join(class_dir, filename)

        dst = os.path.join(train_dir, bird_class, filename)

        os.makedirs(os.path.dirname(dst), exist_ok=True)

        shutil.copyfile(src, dst)

    for filename in validation_files:

        src = os.path.join(class_dir, filename)

        dst = os.path.join(validation_dir, bird_class, filename)

        os.makedirs(os.path.dirname(dst), exist_ok=True)

        shutil.copyfile(src, dst)

    for filename in test_files:

        src = os.path.join(class_dir, filename)

        dst = os.path.join(test_dir, bird_class, filename)

        os.makedirs(os.path.dirname(dst), exist_ok=True)

        shutil.copyfile(src, dst)

print("数据集划分完成!")

最终程序结构结果如图:

3-4 识别模型程序结构

CNN 结构,包括多个卷积层、池化层、全连接层等。在最后的输出层使用 softmax 激活函数,因为这是一个多分类问题,需要输出每个类别的概率。损失函数选用 categorical_crossentropy,用于多分类问题。优化器选用 adam。

3-5 鸟类识别代码

import tensorflow as tffrom tensorflow.keras import layers, modelsfrom tensorflow.keras.preprocessing.image import ImageDataGenerator

# 设置超参数

batch_size = 32

epochs = 10

input_shape = (150, 150, 3)  # 输入图像大小

# 构建CNN模型

model = models.Sequential([

    layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape),

    layers.MaxPooling2D((2, 2)),

    layers.Conv2D(64, (3, 3), activation='relu'),

    layers.MaxPooling2D((2, 2)),

    layers.Conv2D(128, (3, 3), activation='relu'),

    layers.MaxPooling2D((2, 2)),

    layers.Flatten(),

    layers.Dense(512, activation='relu'),

    layers.Dense(1, activation='sigmoid')  # 二分类,鸟类或非鸟类

])

# 编译模型

model.compile(optimizer='adam',

              loss='binary_crossentropy',

              metrics=['accuracy'])

# 数据增强和准备

train_datagen = ImageDataGenerator(

    rescale=1./255,

    shear_range=0.2,

    zoom_range=0.2,

    horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

    'train_data_directory',  # 训练数据目录

    target_size=(150, 150),

    batch_size=batch_size,

    class_mode='binary')  # 二分类

validation_generator = test_datagen.flow_from_directory(

    'validation_data_directory',  # 验证数据目录

    target_size=(150, 150),

    batch_size=batch_size,

    class_mode='binary')  # 二分类

# 训练模型

model.fit(

    train_generator,

    steps_per_epoch=train_generator.samples // batch_size,

    epochs=epochs,

    validation_data=validation_generator,

    validation_steps=validation_generator.samples // batch_size)

# 保存模型

model.save('bird_classifier_model.h5')

3.6 识别模型设计

对于CNN图像识别的结果分析,可以从准确率、召回率、F1分数等多个维度进行评估。这些指标可以帮助我们了解模型在目标检测任务中的性能表现。

精确率(Precision):

公式:Precision = TP / (TP + FP)

解释:精确率是指在所有被模型预测为正例(Positive)的样本中,实际为正例的比例。它衡量了模型在正例预测中的准确性。

召回率(Recall):

公式:Recall = TP / (TP + FN)

解释:召回率是指在所有实际为正例的样本中,模型成功预测为正例的比例。它衡量了模型对正例的识别能力。

图3-7 模型召回率分析

F1曲线是一种多分类问题中常用的性能评估工具,尤其在竞赛中得到广泛应用。它基于F1分数,这是精确率和召回率的调和平均数,取值范围介于0和1之间。1代表最佳性能,而0代表最差性能。

通常情况下,通过调整置信度阈值(判定为某一类的概率阈值),可以观察到F1曲线在不同阈值下的变化。在阈值较低时,模型可能将许多置信度较低的样本判定为真,从而提高召回率但降低精确率。而在阈值较高时,只有置信度很高的样本才被判定为真,使得模型的类别判定更为准确,进而提高精确率。

理想状态下,F1曲线显示在置信度为0.4-0.6的区间内取得了较好的F1分数。表明在这个范围内,模型在平衡精确率和召回率方面表现较为理想。

图3-7 模型F1分数分析

4 后台系统实现

鸟类识别系统的基本业务功能是采用Flask框架实现的, 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。

4.1 开发环境与配置

4.1.1 开发环境

本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。鸟类识别系统使用Pycharm集成开发工具。而系统运行配置时,选择应用本地来部署Web服务器来保障平台的正常运行。本系统的主要开发环境以及开发工具如表4-1所示。

表4-1 系统开发环境和工具

项目

系统环境及版本

硬件环境

Windows 64 位操作系统

Python

Python2.6

数据库

MySql

开发工具

Pycharm

项目架构

Flask

4.1.2 框架配置介绍 

本系统使用集成开发工具Pycharm进行开发,由于 Pycharm本地配置详细资料有很多,不做详细赘述, 本文主要介绍 Flask框架的配置。首先需要在项目中中引入各框架以及数据库连接等所需要工具包。

4.2 数据库的设计

数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。

根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下6个数据实体:用户、鸟类识别等数据库表。

图4-1 鸟类实体属性图

用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-2所示:

图4-2 用户实体属性图

根据以上识别,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对鸟类识别的管理,使鸟类识别与用户实体存在对应关系。

4.3 系统功能模块实现

4.3.1登录认证

用户登录时需要在登录界面输入用户名、密码进行身份认证,要求必须是表单认证、校验。具体流程如时序图如4-2所示。

图4-2登录认证流程图

鸟类识别系统的用户登录界面如下图所4-3所示:

图4-3用户登录注册界面

登陆成功后,系统会成功跳转至首页,在首页中,位于上方的横栏是对本系统的基本信息的描述和欢迎登录效果,另外登录用户的用户名也会显示在首页中,可直接表明用户己成功登录。左侧则是本系统的导航菜单,可折叠展示,较为方便,右方则为欢迎页效果。鸟类识别系统的首页界面如下图所4-4所示:

图4-4 鸟类识别系统首页界面

4.3.2鸟类识别管理功能

鸟类识别管理功能是对鸟类识别进行查询,删除等操作的功能集合,鸟类识别管理功能使用到了鸟类识别表t_bird,鸟类识别表t_bird的主要数据字段,结构,类型及描述如下表4-2所示, 在这个表设计中,每条记录代表一个鸟类,包括鸟类的名称、所属类别、描述、图片 URL 等信息。你可以根据实际需求扩展表的字段,比如增加用户上传的鸟类图片、识别标签等信息。

图4-5 鸟类数据界面

表4-2 鸟类识别表字段

id

INT

主键,唯一标识鸟类

name

VARCHAR(100)

鸟类名称

category

VARCHAR(50)

鸟类所属类别

description

TEXT

鸟类描述

image_url

VARCHAR(255)

鸟类图片 URL

created_at

TIMESTAMP

创建时间

updated_at

TIMESTAMP

更新时间

id

INT

主键,唯一标识鸟类

鸟类识别管理

功能流程功能图如图3-6所示:

图4-6 鸟类识别管理功能流程图 

4.3.3鸟类图像识别功能

收集具有代表性的鸟类图像数据集,并对数据进行标注,确保每张图像都有对应的鸟类标签。数据集的质量和多样性对于训练准确的模型至关重要。本文选择合适的深度学习模型进行训练,常用的包括卷积神经网络(CNN)。在 TensorFlow 中,你可以使用 TensorFlow 提供的高级 API(如 Keras 或 tf.keras)来构建和训练模型。将数据集划分为训练集、验证集和测试集,使用训练集来训练模型,使用验证集来调整模型超参数,并使用测试集来评估模型性能。 训练完成后,将模型部署到生产环境中,以便接受用户上传的图像并进行鸟类识别。你可以使用 TensorFlow Serving 或 TensorFlow Lite 等工具将模型部署到服务器端或移动设备上,并搭建一个简单的 Web 服务来提供识别功能。

用户可以通过 Web 界面或移动应用上传要识别的鸟类图像。上传的图像可以是单张图像或批量上传。在进行识别之前,需要对上传的图像进行预处理,以确保与模型训练时使用的数据具有相同的格式和特征。预处理操作包括图像大小调整、归一化、裁剪等。 将预处理后的图像输入到训练好的模型中,通过模型的前向传播计算得到图像的类别预测结果。根据模型输出的概率分布或类别标签,确定图像中所包含的鸟类。将识别结果返回给用户,通常包括识别出的鸟类名称和相应的置信度或概率。

图4-7鸟类图像识别界面

图4-8鸟类视频识别界面

4.4 本章小结

本章主要识别了基于Tensorflow的鸟类识别系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的鸟类识别系统的搭建环境和开发步骤,包括程序中的一些数据库配置和系统功能介绍等。

5 总结与展望

5.1 系统开发遇到的问题 

由于鸟类识别平台是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括大数据技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。

5.2 总结与展望 

大数据鸟类识别系统是在对相关管理范畴进行详细调研后,确定了系统涉及的领域,包括数据库设计、界面设计等,是一个具有实际应用意义的管理系统。根据本毕业设计要求,经过四个多月的设计与开发,大数据鸟类识别系统基本开发完毕。其功能基本符合用户的需求。
    为保证有足够的技术能力去开发本系统,首先本人对开发过程中所用到的工

具和技术进行了认真地学习和研究,详细地钻研了Flask技术,同时还研究Tensorflow技术等。

从鸟类指标识别和预测平台需求识别开始,到整体框架的设计以及各个详细功能的设计具体实现,最后基于Tensorflow平台的鸟类识别系统的基础架构和详细功能已经大致开发完毕,并将其部署在本地服务器当中运行,用户可以登录使用该系统进行鸟类识别的筛选,同时查询识别的结果。


参考文献

[1] Chen, X., Liu, X., Li, J., Wu, T., & Zhan, Y. (2020). Intelligent Waste Sorting System Based on Deep Learning. International Journal of Environmental Research and Public Health, 17(12),

[2]朱慧雯,田骏,张涛,蒋卫祥.基于互联网大数据的鸟类智能识别平台的设计与实现[J].软件,2020,41(03):99-101.

[3]于涛.大尹格庄金矿井下通风环境感知与指标识别和预测平台研究开发[J].有色金属(矿山部分),2021,73(05):142-146.

[4]汪杰,王春华,李晓华,余克莉莎.煤炭行业指标识别和预测云平台设计研究[J].煤炭工程,2021,53(09):187-192.

[5]周怡燕.基于Tensorflow的数据识别平台构建研究[J].自动化与仪器仪表,2021(05):123-127.

[6]邱灵峰,黄荣.大数据审计平台体系建设构想[J].中国管理信息化,2021,24(17):97-98.

邓宇杰,郑和震,陈英健.长江大保护时空大数据云平台建设需求识别[J].水利规划与设计,2021(09):12-15.

[7]孙也.生产制造企业指标识别和预测平台技术[J].电子技术与软件工程,2021(16):178-179.

张晓伟.基于云平台的大数据信息安全保护策略识别[J].信息记录材料,2021,22(08):185-187.

[8]李军,王涛.基于指标识别和预测技术的网络运维平台应用与开发[J].电脑编程技巧与维护,2021(07):112-114.

[9]Chi Dianwei,Tang Chunhua,Yin Chen. Design and Implementation of Hotel Big Data Analysis Platform Based on Tensorflow技术 and Spark[J]. Journal of Physics: Conference Series,2021,2010(1):

[10]Costa Rogério Luís de C.,Moreira José,Pintor Paulo,dos Santos Veronica,Lifschitz Sérgio. A Survey on Data-driven Performance Tuning for Big Data Analytics Platforms[J]. Big Data Rebirdrch,2021,25(prepublish):
谢  辞

时光飞逝,四年的本科生生涯即将结束。在这四年的时光里,有遇到难题时的手足无措,有获得专业进步时的开心。经历了许多的事情,自己也在不知不觉中成长了很多,心中充盈最多的仍是感激。

首先感谢我的导师,她严谨的治学态度深深地影响每位同学。我要感谢我的父母,他们总是默默的付出,在生活上给与我最大的帮助,在学习上也给我很多建议。

最后,由衷的感谢各位评审老师在百忙之中抽出时间来参与我的论文评审和答辨。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值