神经翻译笔记5. 序列到序列模型与注意力机制

神经翻译笔记5. 序列到序列模型与注意力机制

本系列笔记从2018年3月开始编写,虽然题名为“神经翻译笔记”,但是历经2年3个月,虽然偶尔提到一些神经翻译使用的方法(例如subword),却仍并未真正涉及机器翻译本身,颇有点“博士买驴”的感觉。不过从本章开始,终于要进入正题,聊一聊神经机器翻译用到的核心技术了(然而要跟上时代,讲述Transformer,可能还需要过很久。本章预计会写10节,将是一个漫长的过程)

本章的主要内容是讲述基于RNN的序列到序列模型与注意力机制,本文参考如下课程讲义和教材:


机器翻译概论

机器翻译是自然语言处理领域出现比较早的一类任务,其在1950年开始就受到了广泛研究。该任务的目的是将源语言 S S S的句子 x x x翻译成目标语言 T T T的句子 y y y。早期的机器翻译是纯基于规则的,人们通过编写的双语词典逐词翻译。在20世纪90年代到2014年以前,机器翻译一直处于统计机器翻译时代。假设给定了一个法语句子 x x x,要找到其对应的最佳英语翻译 y y y,实际上就是要找
a r g max ⁡ y P ( y ∣ x ) \mathop{\rm arg \max}_y P(y|x) argmaxyP(yx)
根据贝叶斯定律,有
a r g max ⁡ y P ( y ∣ x ) = P ( x ∣ y ) P ( y ) \mathop{\rm arg \max}_y P(y|x) = P(x|y)P(y) argmaxyP(yx)=P(xy)P(y)
这样的分解说明要做好机器翻译,需要引入两个模型

  • 翻译模型,建模单词和词组应如何被翻译(可信性),该模型从平行语料中学习
  • 语言模型,建模如何写出好的英语(通顺性),该模型从单语语料中学习

由此带来的问题是,应该如何从平行语料中学习翻译模型 P ( x ∣ y ) P(x|y) P(xy)呢?做法是引入一个隐变量 a a a,来学习 P ( x , a ∣ y ) P(x,a|y) P(x,ay)。这里这个隐变量 a a a被称为对齐信息,即源句 x x x和目标句 y y y之间的对应关系。理想上,将源语言的每个词翻译成目标语言的对应词,就应该大功告成了,但是实际上事情远没有这么简单,其核心原因就是自然语言中不同语言之间对齐的复杂性,例如

  • 源句中有些词在目标句中无对应词。例如“Le Japon secoué par deux nouveaux séismes”翻译成英语“Japan shaken by two new quakes”,这里le在英语中就不翻译(单就单词来讲,le可以翻成the,但不符合英语文法)
  • 源句词到目标句词的一对多关系。例如“Le reste appartenait aux autochtones”翻译成“The balance was the territory of the aboriginal people”,这里“appartenait”对应“was the territory”;“aux”对应“of the”,autochtones对应“aboriginal people”。有时有的单词可以对应很多个词,例如“il a m’entarté”中“entarté”对应英语的“hit with a pie”。这种词称为繁衍词(fertile word)
  • 源句词到目标句词的多对一关系。例如“Le programme a été mis en application”翻译成“The program has been implemented”,这里“mis en application”对应“implemented”
  • 源句词到目标句词的多对多关系,或者说短语级对应关系。例如“Les pauvres sont démunis”翻译成“The poor don’t have any money”,这里“sont démunis”翻译成“don’t have any money”

为了更准确地描述这种复杂的对齐关系,成功的统计翻译系统通常都比较庞大,由许多独立的子系统构成。此外,还需要大量的特征工程工作,甚至要为不同的语言现象分别设计特征,人力成本很高

神经翻译的提出有力地改变了这样的状况,它的核心思路是只使用一个系统,也就是一个神经网络模型端到端地解决所有问题。通过大规模语料的训练,模型接收到一个简单处理过的源语言句子,就可以直接生成一个目标语言句子,不用经过其它模型人工提取特征。这种神经网络模型称为序列到序列(sequence-to-sequence, s2s)模型,因为输入是一个标识符序列,输出也是一个标识符序列。典型的序列到序列模型可以看做是由编码器解码器两个部分构成

  • 编码器负责读取整个句子,编码成一个维度固定的向量并输出
  • 解码器从编码器拿到输入的编码向量,逐步解码输出目标句的各个标识符

因此,序列到序列模型也通常被称为编码器-解码器模型(本文及后文会混用这两个名词,不对这两个概念做区分)。下面给出了一个最简单的序列到序列模型示意图(图自Neubig的turorial)

序列到序列模型示意图,图出自Neubig的tutorial

编码器-解码器结构

由于还没有涉及到CNN和Transformer,因此这里先假设编码器和解码器部分都是两个单向的RNN,编码器记作 R N N f ( ⋅ ) {\rm RNN}_f(\cdot) RNNf(),解码器记作 R N N e ( ⋅ ) {\rm RNN}_e(\cdot) RNNe(),则模型可以表示为
x f ( t ) = E f [ f ( t ) ] h f ( t ) = { R N N f ( x f ( t ) , h f ( t − 1 ) ) t ≥ 1 0 o t h e r w i s e x e ( t ) = E e [ e ( t − 1 ) ] h e ( t ) = { R N N e ( x e ( t ) , h e ( t − 1 ) ) t ≥ 1 h f ∣ F ∣ o t h e r w i s e p e ( t ) = s o f t m a x ( W h s h e ( t ) + b s ) \begin{aligned} \boldsymbol{x}_f^{(t)} &= \boldsymbol{E}_f[f^{(t)}] \\ \boldsymbol{h}_f^{(t)} &= \begin{cases}{\rm RNN}_f\left(\boldsymbol{x}_f^{(t)}, \boldsymbol{h}_f^{(t-1)}\right) & t \ge 1\\ \boldsymbol{0} & {\rm otherwise}\end{cases} \\ \boldsymbol{x}_e^{(t)} &= \boldsymbol{E}_e[e^{(t-1)}] \\ \boldsymbol{h}_e^{(t)} &= \begin{cases}{\rm RNN}_e\left(\boldsymbol{x}_e^{(t)}, \boldsymbol{h}_e^{(t-1)}\right) & t \ge 1\\ \boldsymbol{h}^{|F|}_f & {\rm otherwise}\end{cases} \\ \boldsymbol{p}_e^{(t)} &= {\rm softmax}\left(\boldsymbol{W}_{hs}\boldsymbol{h}_e^{(t)} + \boldsymbol{b}_s\right) \end{aligned} xf(t)hf(t)

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
引用提到了CBAM(Convolutional Block Attention Module)是一种卷积神经网络注意力机制,而引用提到了作者在对注意力机制进行分类总结时,参考了一些综述和网上资料,并加入了一些新的内容。由于没有具体提到QKV自注意力机制与CBAM的关系,我们可以通过引用中的文献《An Introductory Survey on Attention Mechanisms in NLP Problems》来了解QKV自注意力机制。 根据中的文献,QKV自注意力机制是自然语言处理问题中的一种注意力机制。在自注意力机制中,输入序列(例如句子中的单词)通过计算查询(query)、键(key)和值(value)之间的相似度,以便为每个输入位置分配一个权重,用于生成上下文相关的表示。具体而言,在QKV自注意力机制中,查询是用于获取与其他输入位置相关信息的位置,键是用于计算查询和其他位置之间的相似度,值是用于生成每个位置的加权和表示。 CBAM是一种卷积神经网络的注意力机制,与QKV自注意力机制在具体实现和应用上可能有所不同。在CBAM中,注意力机制主要用于在卷积神经网络中关注输入特征图的不同通道和空间位置,以提高模型的性能。CBAM主要包括通道注意力和空间注意力两个模块,通道注意力用于对不同通道的特征进行加权,而空间注意力用于对不同空间位置的特征进行加权。 综上所述,QKV自注意力机制和CBAM都是注意力机制的一种,但在具体实现和应用上可能有所差异。QKV自注意力机制主要应用于自然语言处理问题,而CBAM是一种卷积神经网络的注意力机制,用于提高模型性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [学习笔记|NLP中的注意力机制汇总](https://blog.csdn.net/qq_33648725/article/details/106770048)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值