神经翻译笔记5. 序列到序列模型与注意力机制
本系列笔记从2018年3月开始编写,虽然题名为“神经翻译笔记”,但是历经2年3个月,虽然偶尔提到一些神经翻译使用的方法(例如subword),却仍并未真正涉及机器翻译本身,颇有点“博士买驴”的感觉。不过从本章开始,终于要进入正题,聊一聊神经机器翻译用到的核心技术了(然而要跟上时代,讲述Transformer,可能还需要过很久。本章预计会写10节,将是一个漫长的过程)
本章的主要内容是讲述基于RNN的序列到序列模型与注意力机制,本文参考如下课程讲义和教材:
-
Koehn的NMT综述,13.5节
-
Neubig的NMT和s2s教程,第7、8节(除CNN和树结构)(本文写完,Neubig的这篇文章就算看完了)
-
其它相关的经典论文
机器翻译概论
机器翻译是自然语言处理领域出现比较早的一类任务,其在1950年开始就受到了广泛研究。该任务的目的是将源语言 S S S的句子 x x x翻译成目标语言 T T T的句子 y y y。早期的机器翻译是纯基于规则的,人们通过编写的双语词典逐词翻译。在20世纪90年代到2014年以前,机器翻译一直处于统计机器翻译时代。假设给定了一个法语句子 x x x,要找到其对应的最佳英语翻译 y y y,实际上就是要找
a r g max y P ( y ∣ x ) \mathop{\rm arg \max}_y P(y|x) argmaxyP(y∣x)
根据贝叶斯定律,有
a r g max y P ( y ∣ x ) = P ( x ∣ y ) P ( y ) \mathop{\rm arg \max}_y P(y|x) = P(x|y)P(y) argmaxyP(y∣x)=P(x∣y)P(y)
这样的分解说明要做好机器翻译,需要引入两个模型
- 翻译模型,建模单词和词组应如何被翻译(可信性),该模型从平行语料中学习
- 语言模型,建模如何写出好的英语(通顺性),该模型从单语语料中学习
由此带来的问题是,应该如何从平行语料中学习翻译模型 P ( x ∣ y ) P(x|y) P(x∣y)呢?做法是引入一个隐变量 a a a,来学习 P ( x , a ∣ y ) P(x,a|y) P(x,a∣y)。这里这个隐变量 a a a被称为对齐信息,即源句 x x x和目标句 y y y之间的对应关系。理想上,将源语言的每个词翻译成目标语言的对应词,就应该大功告成了,但是实际上事情远没有这么简单,其核心原因就是自然语言中不同语言之间对齐的复杂性,例如
- 源句中有些词在目标句中无对应词。例如“Le Japon secoué par deux nouveaux séismes”翻译成英语“Japan shaken by two new quakes”,这里le在英语中就不翻译(单就单词来讲,le可以翻成the,但不符合英语文法)
- 源句词到目标句词的一对多关系。例如“Le reste appartenait aux autochtones”翻译成“The balance was the territory of the aboriginal people”,这里“appartenait”对应“was the territory”;“aux”对应“of the”,autochtones对应“aboriginal people”。有时有的单词可以对应很多个词,例如“il a m’entarté”中“entarté”对应英语的“hit with a pie”。这种词称为繁衍词(fertile word)
- 源句词到目标句词的多对一关系。例如“Le programme a été mis en application”翻译成“The program has been implemented”,这里“mis en application”对应“implemented”
- 源句词到目标句词的多对多关系,或者说短语级对应关系。例如“Les pauvres sont démunis”翻译成“The poor don’t have any money”,这里“sont démunis”翻译成“don’t have any money”
为了更准确地描述这种复杂的对齐关系,成功的统计翻译系统通常都比较庞大,由许多独立的子系统构成。此外,还需要大量的特征工程工作,甚至要为不同的语言现象分别设计特征,人力成本很高
神经翻译的提出有力地改变了这样的状况,它的核心思路是只使用一个系统,也就是一个神经网络模型端到端地解决所有问题。通过大规模语料的训练,模型接收到一个简单处理过的源语言句子,就可以直接生成一个目标语言句子,不用经过其它模型人工提取特征。这种神经网络模型称为序列到序列(sequence-to-sequence, s2s)模型,因为输入是一个标识符序列,输出也是一个标识符序列。典型的序列到序列模型可以看做是由编码器和解码器两个部分构成
- 编码器负责读取整个句子,编码成一个维度固定的向量并输出
- 解码器从编码器拿到输入的编码向量,逐步解码输出目标句的各个标识符
因此,序列到序列模型也通常被称为编码器-解码器模型(本文及后文会混用这两个名词,不对这两个概念做区分)。下面给出了一个最简单的序列到序列模型示意图(图自Neubig的turorial)
编码器-解码器结构
由于还没有涉及到CNN和Transformer,因此这里先假设编码器和解码器部分都是两个单向的RNN,编码器记作 R N N f ( ⋅ ) {\rm RNN}_f(\cdot) RNNf(⋅),解码器记作 R N N e ( ⋅ ) {\rm RNN}_e(\cdot) RNNe(⋅),则模型可以表示为
x f ( t ) = E f [ f ( t ) ] h f ( t ) = { R N N f ( x f ( t ) , h f ( t − 1 ) ) t ≥ 1 0 o t h e r w i s e x e ( t ) = E e [ e ( t − 1 ) ] h e ( t ) = { R N N e ( x e ( t ) , h e ( t − 1 ) ) t ≥ 1 h f ∣ F ∣ o t h e r w i s e p e ( t ) = s o f t m a x ( W h s h e ( t ) + b s ) \begin{aligned} \boldsymbol{x}_f^{(t)} &= \boldsymbol{E}_f[f^{(t)}] \\ \boldsymbol{h}_f^{(t)} &= \begin{cases}{\rm RNN}_f\left(\boldsymbol{x}_f^{(t)}, \boldsymbol{h}_f^{(t-1)}\right) & t \ge 1\\ \boldsymbol{0} & {\rm otherwise}\end{cases} \\ \boldsymbol{x}_e^{(t)} &= \boldsymbol{E}_e[e^{(t-1)}] \\ \boldsymbol{h}_e^{(t)} &= \begin{cases}{\rm RNN}_e\left(\boldsymbol{x}_e^{(t)}, \boldsymbol{h}_e^{(t-1)}\right) & t \ge 1\\ \boldsymbol{h}^{|F|}_f & {\rm otherwise}\end{cases} \\ \boldsymbol{p}_e^{(t)} &= {\rm softmax}\left(\boldsymbol{W}_{hs}\boldsymbol{h}_e^{(t)} + \boldsymbol{b}_s\right) \end{aligned} xf(t)hf(t)x