层次分析法(AHP)—以b站up主评价问题为例

本文介绍层次分析法的基本概念与应用,通过构造判断矩阵并求出权重来解决评价类问题。以B站UP主为例,详细解释如何设定指标权重,并通过一致性检验确保权重设定的合理性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是北海。

本期课程讲解层次分析法的基本概念,核心思想就是如何构造判断矩阵并求出权重。课程视频已在b站更新:

https://www.bilibili.com/video/BV1Ja411B7HR?p=3&share_source=copy_web

例题

对以下几位b站up主进行综合评价评选出综合得分第一名:老番茄、老师好我叫何同学、木鱼水心、凉风Kaze、罗翔说刑法。

对于评价类问题,可以采用层次分析法求解。层次分析法结构如下图所示:

模型包括三大部分:目标层、准则层和方案层。

  • 目标层:对5位up主进行综合评价,评选出第一名

  • 准则层:以4项指标作为评价准则,指标的数据可从up主个人主页找到

  • 方案层:每一位up主都有可能是第一,所以有5个方案

如何根据4项指标对5位up主进行综合评价?

简单粗暴法:粉丝数+最高播放数+获赞数+稿件数,数值最大的就是第一。类似于平时考试,考了四门课,总分最高的就是年级第一。

指标的数量级不同:播放数几千万,稿件数一般几百,简单相加,加了个寂寞。

因此需要先对每一行的数组[a, b, c, d]归一化处理得到[a/(a+b+c+d), b/(a+b+c+d), c/(a+b+c+d), d/(a+b+c+d) ]

利用归一化后的数据,四项指标相加求出总分,可见分数最高的是老番茄。

但这样做,忽略了一个问题:现实中指标对于评价的重要性不同。一般来说,粉丝数比稿件数更能体现up主的优秀。

因此需要指标数值乘以权重再相加,以区分重要性

例如假设 综合评分 = 0.4粉丝数+0.2播放数+0.3获赞数+0.1稿件数,这样粉丝数的重要性就明显高于稿件数了。

注意,权重是人为主观设定的,这也是层次分析法的缺点

因此可能出现极端情况:主观认为稿件数权重是1,其他指标设为0,会带来荒谬的结论。

例如下面两位up主,如果只看稿件数的话,右边的up主的得分会高于左边的up主,这显然是不合理的。

 因此当前问题转化为:如何较为科学地设定权重?

判断矩阵

如何较为科学地设定权重?

基本思路是:通过对指标的重要性进行两两比较,构造判断矩阵,从而求出权重

判断矩阵中元素𝑎𝑖𝑗的意义是,第𝑖个指标相对第𝑗个指标的重要程度。

粉丝数和稿件数相比,根据文献或个人主观认为,粉丝数比稿件数明显重要,则设置𝑎14为5

反过来,稿件数相比粉丝数的重要性那就是1/5, 𝑎41为1/5。

如此求得矩阵中的每个元素值,得到整个判断矩阵:

 但是仔细观察该矩阵,会发现存在矛盾

  • 设粉丝数为A,最高播放数为B,获赞数为C,稿件数为D
  • 𝑎23=1/2意味着在重要性上,B<C; 𝑎24=2意味着B>D;因此D<B<C
  • 而𝑎34=1/3意味着C<D,与上一条矛盾!

出现前后不一致的矛盾,是因为每一次两两比较的过程中暂时忽略了其他因素,导致最后的结果可能出现矛盾。

在数学上可证明,理想情况下:满足𝑎𝑖𝑗=𝑎𝑖𝑘∗𝑎𝑘𝑗且矩阵各行(列)成倍数关系的矩阵,称为一致矩阵,不会出现矛盾的情况(证明略)。

但因为权重的设定带有主观性,难以得到严格的一致矩阵

因此退一步,我们构造的判断矩阵只需和一致矩阵的“差异”不大即可,求出并检验“差异”的过程称为一致性检验

一致性检验

计算一致性比例CR

C R=\frac{C I}{R I}

其中

C I=\frac{\lambda_{\max }-n}{n-1}

\lambda_{\max }为矩阵的最大特征值,n为评价标准数,即矩阵行(列)数。

𝑅𝐼为平均随机一致性指标,通过查表可得到不同的𝑛对应的𝑅𝐼。一般n不会超过10,如果评价标准过多,可以考虑构建多级评价。

  • 如果一致性比例𝐶𝑅=0 ,说明判断矩阵是一致矩阵,不会出现任何矛盾的情况(证明略)
  • 如果一致性比例𝐶𝑅<0.1,可以认为判断矩阵一致矩阵的“差异”不大,通过一致性检验
  • 如果一致性比例𝐶𝑅≥0.1,需要修改判断矩阵,直到𝐶𝑅<0.1。

对当前的判断矩阵进行一致性检验:当前判断矩阵的\lambda_{\max }=4.68,n=4,求得𝐶𝐼 = 0.227,查表𝑅𝐼=0.89,得𝐶𝑅=0.255,此时𝐶𝑅 ≥0.1,需要修改判断矩阵

 改了𝑎34改了和a43后,修改后的矩阵如下:

 对新判断矩阵再进行一致性检验:该判断矩阵的\lambda_{\max }=4.113,𝑛=4,求得𝐶𝐼 = 0.038,查表𝑅𝐼=0.89,得𝐶𝑅=0.042,此时𝐶𝑅 <0.1,通过了一致性检验

判断矩阵求权重

可以采用算术平均法求权重。此外还有其他方法不多介绍,只掌握一种即可。

将通过了一致性检验的判断矩阵按列归一化,然后每一行分别求和,求和的结果除以𝑛 ,得到的列向量就是权重向量。

求得4项指标的权重依次为0.49,0.18,0.23,0.1。

问题

已经求出权重了,对所有准则进行加权求和,每一位up主的综合评分 = 0.49粉丝数+0.18播放数+0.23获赞数+0.1稿件数

注意,该式中的数据是归一化处理后的数据。

结果如上表所示,最终总评分最高的up就是老番茄。

 总结

层次分析法解决评价类的问题整体思路:

 问题拓展

本例题当中,粉丝数等指标的数据是已知的,但在比赛中更常见的情况是指标数据未知,那该怎么办呢?

例如,题目要求以影响力、作品热度、作品质量和发展潜力对up进行综合评价。这四项指标找不到客观数据啊!

此时的解题思路,和本文一样:若准则层有m个因素,则通过构造m个判断矩阵来求出每一个方案层元素的权重,即评分;之后再进行准则层到目标层的操作(即本节课所讲)。

 本文讲解了层次分析法的基本思想,这种更复杂的情况,以及多层准则层的情况该如何处理,会在以后的课程中讲解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模BOOM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值