2024辽宁省大学生数学建模大赛B题详细思路代码文章成品手把手教学-钢铁产品质量优化

钢铁产品质量优化

摘要

冷轧带钢通过连续退火处理提高机械性能,工艺包括加热、保温、缓冷、快冷、过时效、淬火等阶段,以实现金属组织再结晶。由于各阶段工艺参数间存在耦合性,难以建立机理模型,给在线质量控制和优化带来挑战。通过获取带钢规格、工艺参数和机械性能数据,可用于优化产品质量,性能指标主要为硬度。

针对问题一,通过数据预处理、标准化及相关性分析,我们发现碳含量、均热炉温度与带钢硬度具有显著正相关,而加热炉、快冷炉、缓冷炉和淬火炉温度与硬度呈负相关,尤其是淬火炉温度。通过线性回归和随机森林模型分析,确定快冷炉温度、均热炉温度和加热炉温度对硬度影响最大,碳含量也显著影响硬度。其他参数如淬火炉温度、带钢宽度、缓冷炉温度、平整机张力和硅含量的影响较小,但仍需考虑在优化过程中。

在问题二中,为预测带钢硬度,我们构建了XGBoost和LightGBM模型,并通过均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)对其性能进行评估。模型性能指标显示,两种模型的预测结果与实际值高度一致,碳含量、带钢厚度和缓冷炉温度为最重要特征。

为了优化带钢的硬度,我们使用粒子群优化(PSO)算法,通过迭代调整工艺参数组合,使带钢硬度接近目标值。结果显示,初始适应度值为12800,前10次迭代后迅速下降至11600,40次迭代后趋于稳定在11400,表明PSO有效地找到了接近最优的参数组合,显著改善了工艺参数的性能并减少了与目标硬度的差距。

关键词:相关性分析、线性回归、随机森林、PSO、XGBoost、lightGBM

问题一首先我们对数据进行预处理,数据预处理的主要目标是保证数据的完整性和一致性,具体包括了处理缺失值、异常值,以及标准化这些操作:

a)处理缺失值和异常值:使用适当的方法填补缺失值,剔除或修正异常值,以保证数据的质量。

b)标准化:不同特征的量纲和取值范围可能不同,为了消除量纲差异,我们需要对数据进行标准化处理:

其中, 为原始数据, 为均值, 为标准差。标准化后,数据将具有零均值和单位方差,便于后续分析。

问题一要求通过对上述数据的分析,确定哪些参数对带钢硬度有重要影响,并为生产工艺的优化提供依据。因此我们进行相关性分析是确定特征与目标变量之间关系的重要方法。通过计算每个特征与硬度的皮尔逊相关系数,可以初步判断各特征的重要性:

其中, 和 分别是第 个样本的特征值和目标值, 和 分别是特征和目标的均值。通过计算相关系数 ,我们可以定量地描述特征与硬度之间的线性关系。

因此,我们构建了相关性矩阵图,如下图所示。

为了进一步展示各个因素同变量硬度之间的关系,我们绘制了如下的柱状图。

在这里插入图片描述

从结果中可以看到,碳含量、均热炉温度与硬度具有较显著的正相关关系,这些参数的增加可能导致硬

为了更深入地分析各特征对硬度的影响,我们采用多种机器学习模型进行特征重要性分析,主要方法包括线性回归和随机森林。线性回归模型用于估计目标变量与多个特征之间的线性关系。假设硬度 与各特征, ,…, 之间存在线性关系,线性回归模型的表达式为:

特征重要性可以通过回归系数的绝对值来衡量:

回归系数的绝对值越大,说明该特征对硬度的影响越大。

随机森林是一种集成学习方法,通过多个决策树的集成来提高预测性能。特征重要性通过计算特征在所有树中的平均信息增益来衡量:

在这里插入图片描述

其中, 为决策树的数量, 为第 棵树中特征 的信息增益。

在这里插入图片描述

综合线性回归和随机森林模型的结果,可以得出以下结论:
xxxx

5.2 问题二建模与求解

问题二的目标是建立一个数据驱动的模型来预测带钢的硬度,并对该模型的性能进行详细的分析和评估。为了解决这个问题,我们构建了XGBoost和LightGBM两种模型来对带钢的硬度进行预测,我们从多个指标对模型的性能进行评估,包括均方误差(MSE)、均方根误差(RMSE)和决定系数(R方)。

两个模型的得到的性能指标如下,前者为lightBGM模型后者为XGBoost模型:

在模型训练完成后,通过分析特征重要性,识别对硬度预测影响最大的特征。特征重要性可以帮助我们理解哪些特征对模型的贡献最大,从而优化生产过程。此外还进行通过分析预测值与实际值之间的残差,检查模型的误差分布,识别系统性误差。

下图展示了我们的各项工艺参数的重要性得分。从特征重要性图表中,我们可以看出不同特征对带钢硬度预测的重要性:

在这里插入图片描述

2.3问题三建模与求解

问题三为了帮助现场操作人员优化带钢工艺参数,我们可以使用粒子群优化(PSO)算法来求解。以下是详细的建模过程和步骤:

1.问题描述

目标是根据带钢产品的规格数据和工艺参数,优化带钢的机械性能,特别是硬度。优化需要考虑到各个工艺参数的耦合性,找到最优的参数组合,使得带钢的硬度接近目标硬度。

2.参数定义

假设有n 个工艺参数,这些参数分别表示带钢的不同加工阶段的设置,例如加热温度、均热温度、冷却速度等。

3.目标函数

目标函数 用于衡量工艺参数组合的优劣,定义为带钢实际硬度与目标硬度之间的差值:

在这里插入图片描述

在这里插入图片描述

参考:……^ ^https://docs.qq.com/doc/DVVlCWWxmanFqak9B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值