烟草营销案例数据分析
摘要
烟草在中国经济中占据重要地位,作为主要的税收和财政收入来源,卷烟销售收入持续增长,反映了市场的稳定需求。中国实施的烟草专卖制度通过集中管理和严格控制生产、销售及流通环节,确保市场秩序和国家利益。烟草产业链涵盖了从烟叶种植到卷烟制造和销售的多个环节,其中烟叶采购由中国烟草总公司负责,卷烟生产和销售则由省级烟草公司管理。本研究利用某地区的烟草销售数据,通过时间序列预测模型分析未来销量和销售金额,以优化销售策略。
针对问题一和问题二,通过构建两种不同类型的时间序列预测模型——ARIMA模型和LSTM模型,分别预测A1和A2两个香烟品牌的未来销量以及预测A3和A4两个香烟品牌的未来销售金额。 ARIMA模型通过自动参数选择方法优化参数,捕捉历史数据中的季节性和趋势性特征,适用于展示明显周期性波动的销量数据。而LSTM模型则通过其在处理长时间依赖性和非线性关系方面的优势,提供了对销量趋势的平稳且保守的预测,适合历史数据波动大且趋势不稳定的情况。通过比较两种模型的预测结果,本文不仅揭示了各模型的优势和适用场景,还提供了具体的销量预测。
在问题三中,针对A5品牌香烟的销量和销售金额进行了联合预测,通过集成学习方法提升预测准确性和稳定性。我们采用ARIMA、Prophet和XGBoost三种模型进行单独预测,并将这些模型的预测结果作为特征输入到线性回归模型中。基础模型的预测结果显示,ARIMA模型对平稳部分表现良好,但对异常波动捕捉能力有限;Prophet模型在捕捉长期趋势方面效果突出,但在异常波动期表现欠佳;XGBoost模型在整体趋势和细节变化方面表现优异,但在异常波动时期仍有改进空间。通过将这些模型的预测结果集成到线性回归模型中,我们进一步提高了预测性能。最终,集成模型在销量和销售金额预测中的均方误差(MSE)分别为3982.05和3801567174805.10,决定系数(R²)分别为0.818和0.816。结果表明,集成学习方法有效地综合了各个基础模型的优点,提升了对A5品牌香烟销量和销售金额的预测精度。
关键词:相关性分析、线性回归、随机森林、PSO、XGBoost、lightGBM
目录
摘要
一、问题重述
1.1问题背景
1.2要解决的问题
二、问题分析
2.1任务一的分析
2.2任务二