【全部更新完毕】2024钉钉杯大数据建模挑战赛A题详细思路代码文章成品手把手教学-烟草营销案例数据分析

烟草营销案例数据分析

摘要

烟草在中国经济中占据重要地位,作为主要的税收和财政收入来源,卷烟销售收入持续增长,反映了市场的稳定需求。中国实施的烟草专卖制度通过集中管理和严格控制生产、销售及流通环节,确保市场秩序和国家利益。烟草产业链涵盖了从烟叶种植到卷烟制造和销售的多个环节,其中烟叶采购由中国烟草总公司负责,卷烟生产和销售则由省级烟草公司管理。本研究利用某地区的烟草销售数据,通过时间序列预测模型分析未来销量和销售金额,以优化销售策略。

针对问题一和问题二,通过构建两种不同类型的时间序列预测模型——ARIMA模型和LSTM模型,分别预测A1和A2两个香烟品牌的未来销量以及预测A3和A4两个香烟品牌的未来销售金额。 ARIMA模型通过自动参数选择方法优化参数,捕捉历史数据中的季节性和趋势性特征,适用于展示明显周期性波动的销量数据。而LSTM模型则通过其在处理长时间依赖性和非线性关系方面的优势,提供了对销量趋势的平稳且保守的预测,适合历史数据波动大且趋势不稳定的情况。通过比较两种模型的预测结果,本文不仅揭示了各模型的优势和适用场景,还提供了具体的销量预测。

在问题三中,针对A5品牌香烟的销量和销售金额进行了联合预测,通过集成学习方法提升预测准确性和稳定性。我们采用ARIMA、Prophet和XGBoost三种模型进行单独预测,并将这些模型的预测结果作为特征输入到线性回归模型中。基础模型的预测结果显示,ARIMA模型对平稳部分表现良好,但对异常波动捕捉能力有限;Prophet模型在捕捉长期趋势方面效果突出,但在异常波动期表现欠佳;XGBoost模型在整体趋势和细节变化方面表现优异,但在异常波动时期仍有改进空间。通过将这些模型的预测结果集成到线性回归模型中,我们进一步提高了预测性能。最终,集成模型在销量和销售金额预测中的均方误差(MSE)分别为3982.05和3801567174805.10,决定系数(R²)分别为0.818和0.816。结果表明,集成学习方法有效地综合了各个基础模型的优点,提升了对A5品牌香烟销量和销售金额的预测精度。

关键词:相关性分析、线性回归、随机森林、PSO、XGBoost、lightGBM

目录

摘要

一、问题重述

1.1问题背景

1.2要解决的问题

二、问题分析

2.1任务一的分析

2.2任务二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值