Kmeans

参考:http://blog.csdn.net/sb19931201/article/details/53586468

http://blog.csdn.net/angelahhj/article/details/41038955

http://blog.csdn.net/loadstar_kun/article/details/39450615

http://blog.csdn.net/tianwaikai/article/details/40898683

EM算法用于寻找隐藏参数的最大似然估计。该算法首先在E step中计算隐藏参数的似然估计,然后再M step中进行最大化,然后进行EM step的迭代直至收敛。应用场景之一是聚类问题,但EM算法本身并不是一个聚类算法。EM算法往往给出的是局部最佳解而非全局最佳解,EM算法对参数初始值敏感,不同的初始值可能得到不同的结果。

EM的算法流程如下:

  1. 初始化分布参数

  2. 重复直到收敛:

    1. E步骤:用分布参数计算每个实例的聚类概率。(即每个实例属于不同聚类的概率)

    2. M步骤:重新估计分布参数,以使得数据的似然性最大

机器学习数据聚类领域k-means算法也是EM算法思想的一种体现,知道聚类的中心值后,就知道每个点属于哪个类;知道每个点属于哪个类后,又重新纠正聚类中心点的位置。不同的初始聚类中心可能导致完全不同的聚类结果。

数学模型:最终得到的分类结果

模型参数:隐变量--聚类的中心(值)以及每一个点和每一个类别的隶属关系。

目标函数:同一类中不同点到中心的平均距离d较近,不同类之间的平均距离D较远

因此每一次迭代都要最大化D和-d(即最小化d),这个就是整个过程的最大化目标函数。

K-Means随机挑选K个点作为起始的中心。 
(1)首先计算所有点到这K个聚类中心的距离,并将这些点归到最近的一个类中。 
(2)根据归类结果重新计算每一类的中心(比如计算该类别所有样本点的均值)。 
这样新的聚类中心与原先的相比就会有一个位移,重复上述步骤直到新的聚类中心与旧的聚类中心的偏移非常小,即过程收敛。



Kmeans算法的缺陷

  • 聚类中心的个数K 需要事先给定,但在实际中这个 K 值的选定是非常难以估计的,很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适
  • Kmeans需要人为地确定初始聚类中心,不同的初始聚类中心可能导致完全不同的聚类结果。(可以使用Kmeans++算法来解决)
K值的确定:
给定一个合适的类簇指标,比如平均半径或直径,只要我们假设的类簇的数目等于或者高于真实的类簇的数目时,该指标上升会很缓慢,而一旦试图得到少于真实数目的类簇时,该指标会急剧上升。即找拐点。

下图是当K的取值从2到9时,聚类效果和类簇指标的效果图:

  左图是K取值从2到7时的聚类效果,右图是K取值从2到9时的类簇指标的变化曲线,此处我选择类簇指标是K个类簇的平均质心距离的加权平均值。从上图中可以明显看到,当K取值5时,类簇指标的下降趋势最快,所以K的正确取值应该是5.为以下是具体数据:

1 2 个聚类
2 所有类簇的半径的加权平均值 8.51916676443
3 所有类簇的平均质心距离的加权平均值 4.82716260322
4 3 个聚类
5 所有类簇的半径的加权平均值 7.58444829472
6 所有类簇的平均质心距离的加权平均值 3.37661824845
7 4 个聚类
8 所有类簇的半径的加权平均值 5.65489660064
9 所有类簇的平均质心距离的加权平均值 2.22135360453
10 5 个聚类
11 所有类簇的半径的加权平均值 3.67478798553
12 所有类簇的平均质心距离的加权平均值 1.25657641195
13 6 个聚类
14 所有类簇的半径的加权平均值 3.44686996398
15 所有类簇的平均质心距离的加权平均值 1.20944264145
16 7 个聚类
17 所有类簇的半径的加权平均值 3.3036641135
18 所有类簇的平均质心距离的加权平均值 1.16653919186
19 8 个聚类
20 所有类簇的半径的加权平均值 3.30268530308
21 所有类簇的平均质心距离的加权平均值 1.11361639906
22 9 个聚类
23 所有类簇的半径的加权平均值 3.17924400582
24 所有类簇的平均质心距离的加权平均值 1.07431888569

初始聚类中心的确定
针对上述第2个缺陷,可以使用Kmeans++算法来解决
K-Means ++ 算法
 k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。
  1. 从输入的数据点集合中随机选择一个点作为第一个聚类中心
  2. 对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
  3. 选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
  4. 重复2和3直到k个聚类中心被选出来
  5. 利用这k个初始的聚类中心来运行标准的k-means算法
 从上面的算法描述上可以看到,算法的关键是第3步,如何将D(x)反映到点被选择的概率上,一种算法如下:
  1. 先从我们的数据库随机挑个随机点当“种子点”
  2. 对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
  3. 然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
  4. 重复2和3直到k个聚类中心被选出来
  5. 利用这k个初始的聚类中心来运行标准的k-means算法

可以看到算法的第三步选取新中心的方法,这样就能保证距离D(x)较大的点,会被选出来作为聚类中心了。至于为什么原因比较简单,如下图 所示:  

                                                

      假设A、B、C、D的D(x)如上图所示,当算法取值Sum(D(x))*random时,该值会以较大的概率落入D(x)较大的区间内,所以对应的点会以较大的概率被选中作为新的聚类中心。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值