k-means

本文为转载 原文地址:https://blog.csdn.net/qq_39388410/article/details/78235882
@TOC版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_39388410/article/details/78235882
K-means原理:
所谓物以类聚,人以群分。相似的人们总是相互吸引在一起。

数据也是一样。在kNN中,某个数据以与其他数据间的相似度来预测其标签,而K-means是一群无标记数据间的因为自我相似的聚拢。显而易见,K-means的目标为簇内密集而簇间稀疏。

简单来说就是首先先确定k个初始点作为质心,然后将数据集中的每一个点分配到一个距其最近的簇中,这一步完成后将每个簇的质心更新为该簇所有点的平均值,直至中心不再变化。

算法实现:(Python)

def distEclud(vecA, vecB):#计算两个向量的欧式距离
return sqrt(sum(power(vecA - vecB, 2)))

def randCent(dataSet, k):#随机质心
n = shape(dataSet)1
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#存储每个点的分配,即簇索引值和误差
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = inf; minIndex = -1
for j in range(k):#寻找最近质心
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print (centroids)
for cent in range(k):#更新质心的位置
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
centroids[cent,:] = mean(ptsInClust, axis=0)
return centroids, clusterAssment
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
k-means算法简单、快速,效率高,当数据集是密集的、球状或团状的簇群,且簇与簇之间区别明显时,聚类效果很好。但是它也有不少的问题:

使用范围的约束
k-means,k-means,这个平均值(means)被定义的情况下才能使用。而且对有些分类属性的数据不适用。而且对非凸面形状的簇,或者大小差别很大的簇简直无解。

k是用户指派的?k的选择问题
由于k是用户预先定义的参数,那么如何选择k才是最佳的呢?一种度量聚类效果的指标是误差平方和(Sum of Squared Error,SSE),SSE越小表示数据点越接近它们的质心,聚类的效果相对来说也就最好。所以利用SEE的改进方法就是对生成的簇进行后处理,一是将最大的SSE值的簇分成两个(将这个簇的点过滤出后再进行k为2的k-means),而是合并最小的SSE簇。
或者是人工考虑“肘部法则”来选择,即画出不同k值下的代价函数图,这很像一个人的肘部,观察图形可知,当达到一个点时J下降的非常快,之后会很慢,由此来选择k。

但是当遇到高维度、海量的数据集时,人们往往很难准确地估计出K的大小,所以最好使用迭代自组织数据分析法(Iterative Self-Organizing Data Analysis Technique ,ISODATA)来判断。即当属于某个类别的样本数过少时把这个类别去除,当属于某个类别的样本数过多、分散程度较大时把这个类别分为两个子类别。

只能用欧式距离?度量方式的选择
除了根据实际情况进行选择外,还可以参照支持向量机中核函数的思想,将所有样本映射到另外一个特征空间中再进行聚类。

闵可夫斯基距离
欧几里得距离
曼哈顿距离
切比雪夫距离
马氏距离
余弦相似度
皮尔逊相关系数
汉明距离
杰卡德相似系数
编辑距离
DTW 距离
KL 散度

计算距离时间太多?距离度量的优化
elkan K-Means算法利用了两边之和大于等于第三边,以及两边之差小于第三边的三角形性质,来减少计算量,提高时间。

不抗干扰,被噪声扰动影响太大

初质心不同,结果不同?K-means对初值的敏感
K-means非常容易受初识质心的影响,质心的不同,聚类结果可能千差万别。所以为了更好的效果,可以采用二分k均值聚类,即每次都选择有最大误差的簇进行二分,直至k个簇全部创建成功。

算法实现:(Python)

def biKmeans(dataSet, k, distMeas=distEclud):#二分k均值聚类
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0]
for j in range(m):
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):#遍历每一个簇
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])#计算划分后的两个簇的误差
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print ("sseSplit, and notSplit: ",sseSplit,sseNotSplit)
if (sseSplit + sseNotSplit) < lowestSSE:#误差之和作为本次划分的误差
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #更新簇的分配结果。将刚刚划分完的0,1编号的结果簇修改编号,由两个数组过滤器来完成
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print ('the bestCentToSplit is: ',bestCentToSplit)
print ('the len of bestClustAss is: ', len(bestClustAss))
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#新的质心增加到centroids中
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
return mat(centList), clusterAssment
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
原型聚类
K-means之所以为原型聚类就在于它是通过先对原型进行初始化,然后对原型进行不断的迭代求解。当然了,不同的原型刻画方法,求解方式,将产生不同的算法。对K-means来说,初始的k个样本便是它的原型向量。与K-means一样,学习向量量化(Learning Vector Quantization,LVQ)也是尝试找到一组原型向量来刻画该原型,但LVQ的样本是带有标记的,即通过监督信息来辅助聚类。如果你了解一些神经网络,那么LVQ对于你应该很熟悉,它的核心其实就是“适者生存”的竞争策略,只对竞争获胜的神经元进行参数调整,是自组织映射(Self-organizing Maps,SOM)基于监督信息的一种变体。

而它用于聚类也是如此。大致算法思想是从样本集中随机选取一个有标记的样本(x,y),找到最小的那个原型向量p,判断样本的标记y与原型向量的标记是否一致。若一致则更新为p’ = p + a*(x-p),否则更新为p’ = p - a*(x - p)。 直观上看标记相同则靠拢,不同则远离。

K-means应用:
KMeans参数说明:
KMeans(algorithm=‘auto’, copy_x=True, init=‘k-means++’, max_iter=300,n_clusters=3, n_init=10, n_jobs=1, precompute_distances=‘auto’,random_state=None, tol=0.0001, verbose=0)

algorithm:"full"就是传统的K-Means算法, “elkan”是采用elkan K-Means算法。
copy_x=True:对是否修改数据的一个标记,如果True,即复制了就不会修改数据。
init=‘k-means++’:初始值选择方式
max_iter=300:最大迭代
n_clusters=3:k的值
n_init=10:初始化质心运行次数
n_jobs=1:并行工作数
precompute_distances=‘auto’:是否预计算距离
random_state=None:随机状态条件
tol=0.0001: 容忍度,即kmeans运行准则收敛的条件
verbose=0:冗长模式
1
2
3
4
5
6
7
8
9
10
11
MiniBatchKMeans(batch_size=45, compute_labels=True, init=‘k-means++’, init_size=None, max_iter=100, max_no_improvement=10, n_clusters=3,n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,verbose=0)

batch_size=45:采样集大小
compute_labels=True:计算标签
init=‘k-means++’:初始值选择方式
init_size=None:质心选择的样本数
max_iter=100:最大迭代
max_no_improvement=10:连续性的无改善聚类效果的最大阈值
n_clusters=3:k的值
n_init=10:初始化质心运行次数
random_state=None:随机状态条件
reassignment_ratio=0.01:某个类别质心被重新赋值的最大次数比例
tol=0.0:容忍度,即kmeans运行准则收敛的条件
verbose=0:冗长模式
1
2
3
4
5
6
7
8
9
10
11
12
比较这两种模式的聚类表现:

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import MiniBatchKMeans, KMeans
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.datasets.samples_generator import make_blobs

#s生成数据
np.random.seed(0)

batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)

#Means
k_means = KMeans(init=‘k-means++’, n_clusters=3, n_init=10)
t0 = time.time()
k_means.fit(X)
t_batch = time.time() - t0

#MiniBatchKMeans
mbk = MiniBatchKMeans(init=‘k-means++’, n_clusters=3, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)
t0 = time.time()
mbk.fit(X)
t_mini_batch = time.time() - t0

fig=plt.figure(figsize=(8, 3))
fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)
colors = [’#4EACC5’, ‘#FF9C34’, ‘#4E9A06’]

k_means_cluster_centers = np.sort(k_means.cluster_centers_, axis=0)
mbk_means_cluster_centers = np.sort(mbk.cluster_centers_, axis=0)
k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)
mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)
order = pairwise_distances_argmin(k_means_cluster_centers,
mbk_means_cluster_centers)

KMeans

ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):
my_members = k_means_labels == k
cluster_center = k_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], ‘w’,
markerfacecolor=col, marker=’.’)
ax.plot(cluster_center[0], cluster_center1, ‘o’, markerfacecolor=col,
markeredgecolor=‘k’, markersize=6)
ax.set_title(‘KMeans’)
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, ‘train time: %.2fs\ninertia: %f’ % (
t_batch, k_means.inertia_))

MiniBatchKMeans

ax = fig.add_subplot(1, 3, 2)
for k, col in zip(range(n_clusters), colors):
my_members = mbk_means_labels == order[k]
cluster_center = mbk_means_cluster_centers[order[k]]
ax.plot(X[my_members, 0], X[my_members, 1], ‘w’,
markerfacecolor=col, marker=’.’)
ax.plot(cluster_center[0], cluster_center1, ‘o’, markerfacecolor=col,
markeredgecolor=‘k’, markersize=6)
ax.set_title(‘MiniBatchKMeans’)
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, ‘train time: %.2fs\ninertia: %f’ %
(t_mini_batch, mbk.inertia_))

#两者的不同聚类点
different = (mbk_means_labels == 4)
ax = fig.add_subplot(1, 3, 3)

for k in range(n_clusters):
different += ((k_means_labels == k) != (mbk_means_labels == order[k]))

identic = np.logical_not(different)
ax.plot(X[identic, 0], X[identic, 1], ‘w’,
markerfacecolor=’#bbbbbb’, marker=’.’)
ax.plot(X[different, 0], X[different, 1], ‘w’,
markerfacecolor=‘m’, marker=’.’)
ax.set_title(‘Difference’)
ax.set_xticks(())
ax.set_yticks(())

plt.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

可以发现两者聚类结果只有少量的不同。

SPSS应用

详细介绍就不多说了,运行后打开节点可以看到很多的细节。

和Weka一样,画好图后应用就可以得到结果:

————————————————
版权声明:本文为CSDN博主「Hiro大好」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39388410/article/details/78235882

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t &ThinSpace; . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值