学习之角点检测SUSAN

SUSAN是一种由牛津大学提出的角点检测算子,具备结构保留的降噪功能。其工作原理是通过圆形模板比较像素值,统计相似像素数量,当数量小于阈值时识别为角点。检测过程包括核定位、相似像素计数、角点响应计算及非最大值抑制。
摘要由CSDN通过智能技术生成

      SUSAN,Smallest Univalue Segment Assimilatating Nucleus的缩写,即最小核值相似区,是由牛津大学的Smith等提出来的。SUSAN算子是一种高效的边缘和角点检测算子,并且具有结构保留的降噪功能(structure preserving noise reduction )。SUSAN使用一个圆形模板和一个圆的中心点,通过圆中心像元值与模板圆内其他像元值得比较,统计出与圆中心点像元值近似的像元数量,当这样的像元值数量小于一个阈值,就被认为是要检测的角点。

    SUSAN角点检测过程如下:

   (1)对于图像中的每个像元,将核放在该像元上;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值