[940]TensorFlow练习4: CNN, Convolutional Neural Networks

Convolutional Neural Networks翻译为卷积神经网络,常用在图像识别和语音分析等领域。CNN详细介绍参看:

使用TensorFlow创建CNN
# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np

# 下载mnist数据集
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('./mnist_data/', one_hot=True)

# from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
#
# mnist = read_data_sets('./mnist_data/', one_hot=True)

n_output_layer = 10


# 定义待训练的神经网络
def convolutional_neural_network(data):
    weights = {'w_conv1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
               'w_conv2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
               'w_fc': tf.Variable(tf.random_normal([7 * 7 * 64, 1024])),
               'out': tf.Variable(tf.random_normal([1024, n_output_layer]))}

    biases = {'b_conv1': tf.Variable(tf.random_normal([32])),
              'b_conv2': tf.Variable(tf.random_normal([64])),
              'b_fc': tf.Variable(tf.random_normal([1024])),
              'out': tf.Variable(tf.random_normal([n_output_layer]))}

    data = tf.reshape(data, [-1, 28, 28, 1])

    conv1 = tf.nn.relu(
        tf.add(tf.nn.conv2d(data, weights['w_conv1'], strides=[1, 1, 1, 1], padding='SAME'), biases['b_conv1']))
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    conv2 = tf.nn.relu(
        tf.add(tf.nn.conv2d(conv1, weights['w_conv2'], strides=[1, 1, 1, 1], padding='SAME'), biases['b_conv2']))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    fc = tf.reshape(conv2, [-1, 7 * 7 * 64])
    fc = tf.nn.relu(tf.add(tf.matmul(fc, weights['w_fc']), biases['b_fc']))

    # dropout剔除一些"神经元"
    # fc = tf.nn.dropout(fc, 0.8)

    output = tf.add(tf.matmul(fc, weights['out']), biases['out'])
    return output


# 每次使用100条数据进行训练
batch_size = 100

X = tf.placeholder('float', [None, 28 * 28])
Y = tf.placeholder('float')


# 使用数据训练神经网络
def train_neural_network(X, Y):
    predict = convolutional_neural_network(X)
    # cost_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=predict,labels=Y))
    cost_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=predict, labels=Y))
    optimizer = tf.train.AdamOptimizer().minimize(cost_func)  # learning rate 默认 0.001

    epochs = 1
    with tf.Session() as session:
        # session.run(tf.initialize_all_variables())
        session.run(tf.global_variables_initializer())
        epoch_loss = 0
        for epoch in range(epochs):
            for i in range(int(mnist.train.num_examples / batch_size)):
                x, y = mnist.train.next_batch(batch_size)
                _, c = session.run([optimizer, cost_func], feed_dict={X: x, Y: y})
                epoch_loss += c
            print(epoch, ' : ', epoch_loss)

        correct = tf.equal(tf.argmax(predict, 1), tf.argmax(Y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
        print('准确率: ', accuracy.eval({X: mnist.test.images, Y: mnist.test.labels}))


train_neural_network(X, Y)

执行结果:

准确率:  0.9789

tflearn

下面使用tflearn重写上面代码,tflearn是TensorFlow的高级封装,类似Keras

tflearn提供了更简单、直观的接口。和scikit-learn差不多,代码如下:

# -*- coding:utf-8 -*-
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression


train_x, train_y, test_x, test_y = tflearn.datasets.mnist.load_data(
    data_dir="./mnist_data/",one_hot=True)

train_x = train_x.reshape(-1, 28, 28, 1)
test_x = test_x.reshape(-1, 28, 28, 1)

# 定义神经网络模型
conv_net = input_data(shape=[None, 28, 28, 1], name='input')
conv_net = conv_2d(conv_net, 32, 2, activation='relu')
conv_net = max_pool_2d(conv_net, 2)
conv_net = conv_2d(conv_net, 64, 2, activation='relu')
conv_net = max_pool_2d(conv_net, 2)
conv_net = fully_connected(conv_net, 1024, activation='relu')
conv_net = dropout(conv_net, 0.8)
conv_net = fully_connected(conv_net, 10, activation='softmax')
conv_net = regression(conv_net, optimizer='adam', loss='categorical_crossentropy', name='output')

model = tflearn.DNN(conv_net)

# 训练
model.fit({'input': train_x}, {'output': train_y}, n_epoch=13,
          validation_set=({'input': test_x}, {'output': test_y}),
          snapshot_step=300, show_metric=True, run_id='mnist')

model.save('./mnist.model')  # 保存模型

"""
model.load('mnist.model')   # 加载模型
model.predict([test_x[1]])  # 预测
"""

TensorFlow练习4: CNN, Convolutional Neural Networks

TensorFlow练习4: CNN, Convolutional Neural Networks

来源:斗大的熊猫

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
卷积神经网络(Convolutional Neural NetworksCNN)是一种强大的深度学习算法,主要用于图像识别和处理。CNN的结构图主要包括卷积层、激活函数、池化层和全连接层。 卷积层是CNN的核心组成部分,由多个卷积核组成。每个卷积核在图像上进行滑动操作,通过计算卷积操作得到新的特征图。卷积操作可以提取出图像的局部特征,并保留了空间结构信息。 在卷积层之后,激活函数(如ReLU)被应用于特征图中的每个元素,以引入非线性。激活函数可以增加网络的表达能力,并促使网络学习更复杂的特征。 池化层用于减少特征图的维度,它通过将特定区域内的特征值进行聚合,并选择最显著的特征进行保留。常用的池化操作包括最大池化和平均池化。池化层可以减少特征图的大小,从而降低参数数量,减小计算量。 最后,全连接层将池化层输出的特征图转换为向量形式,并连接到输出层。全连接层的作用是对特征进行分类或回归预测。它们通常由全连接神经元组成,每个神经元与上一层的所有神经元相连。 在CNN的结构图中,卷积层和池化层可以多次堆叠,以增加网络的深度。这种多层次的结构可以使网络学习到更高级别的抽象特征。此外,CNN还可以通过添加批量归一化、dropout等技术来提高网络的性能和泛化能力。 总之,CNN的结构图展示了卷积神经网络的层次组织和数据流动方式,有助于理解其工作原理和网络结构的设计。通过逐层堆叠不同的层,CNN可以有效地提取图像中的特征,并在分类、目标检测等任务中取得优秀的性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值