【deep learning学习笔记】最近读的几个ppt(三)

本文介绍了2007年NIPS会议上关于深度信念网络的基础教程,包括统计学与人工智能的区别、BP算法的局限性及其改进方法,并详细探讨了限制玻尔兹曼机的工作原理及其实验应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Tutorial on Deep Belief Nets_Hinton_2007_NIPS》

2007年在NIPS的一个报告,70页ppt,那时候deep learning刚起步,作者解释了很多“为什么这么做”或者“为什么这么做了效果好”。

1. 首先讲了“统计学”和“人工智能”的区别

统计学:在低维度数据集合上,用简单模型来表示数据中的结构,其主要困难是去除噪声对真正模型(分布)的影响

人工智能:在高维度的数据集合上,有很多复杂的结构,难以用单一的简单模型来描述,人工智能用复杂模型来学习这些结构

2. bp算法的缺点:

(1)要求是label data

(2)当有多个隐含层的时候,训练速度慢

(3)容易陷入局部最优解

3. 如何克服bp算法的缺点:估计先验概率而不是条件概率

4. 介绍brief nets

(1)对于0-1 vector的时候如何处理

(2)推理容易,训练难

(3)sigmoid belief nets

(4)几种训练方法:

蒙特卡洛抽样(慢)

90年代人们的方法

breakthrough:Boltzmann Machine

Restricted Boltzmann Machines,学习过程,迭代公式

微调过程:bp就很好

5. 实验

用于数字识别,当然效果比svm等方法要好了

6. 为什么上面那么做效果会好

个人觉得,还没有统一理论,碰巧好了,然后来猜是为什么。

(1)用RBM不是严格意义上的训练先验概率,有偏差,不过这种偏差看起来微不足道

(2)可以证明,不断迭代,能够使得模型对数据的描述(log likelihood)的下界不断提升——就是效果越来越好的意思

(3)多少层为好?每层多少神经元为好?

层数还没有定论,不过肯定比单层要好;每层的神经元也没有定论,不过top level的(距离实际输入最远的那层)一定要多一些神经元。

7. 对于实数vector的输入,怎么办?

The Gaussian-Binary RBM

The mean and covariance RBM (mcRBM)

RBM’s with replicated binary units

8. 如何处理时序问题?

类似ngram的思路,只不过把ngram作为实际深度网络的输入。该模型和CRF的关联(讲的简略,个人也没看懂)。

9. reading list

www.cs.toronto.edu/~hinton/deeprefs.html




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值