题目要求
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?- 示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
- 示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法
递归
每一层楼梯,基本都有两种方式可以到达:从前一阶过来,或者从前两阶过来。如下
class Solution {
public:
int climbStairs(int n) {
if (n <= 3)
{
return n;
}
return climbStairs(n-1) + climbStairs(n-2);
}
};
但是,爆栈了。
动态规划
先预先分配好内存,将求取的值存入到内存中,直到找到目标值对应的数目。
class Solution {
public:
int climbStairs(int n) {
if (n <= 3)
{
return n;
}
vector<int> v(n + 1);
v[0] = 0;
v[1] = 1;
v[2] = 2;
for (size_t i = 3; i < n + 1; i++)
{
v[i] = v[i-1] + v[i-2];
}
return v[n];
}
};
复杂度分析
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
1
)
O(1)
O(1)