OpenCV之Sobel算子(C++实现)

sobel算子的基本概念

Sobel算子是一个主要用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导,用来计算图像灰度函数的近似梯度。在图像的任何一点使用此算子,都会得倒对应的梯度矢量或其法向量。

sobel算子的计算过程

假设图像为I,分别在x和y方向上计算梯度,其实就是用卷积核在两个方向上与图像进行卷积,以大小为3的卷积核为例:

然后在图像上的每一点,结合以上两个结果求出近似梯度:

另外也可以用下面更简单的公式替代:

函数原型:

void Sobel(InputArray src, OutputArray dst, int ddpth, int dx, int dy, int ksize=3, double scale=1, double delta=0,int borderType=BORDER_DEFAULT);

参数详解:

  • 第一个参数:输入图像,Mat类型即可;
  • 第二个参数:输出,需要和源图像有一样的大小和类型;
  • 第三个参数:int类型的ddepth,输入图像的深度,支持ruxiasrc.depth()和ddepth的组合。
  1. 若sec.depth()=CV_8U,取ddepth=-1/CV_16S/CV_32F/CV_64F;
  2. 若sec.depth()=CV_16U/CV_16S,取ddepth=-1/CV_16S/CV_32F/CV_64F;
  3. 若sec.depth()=CV_32F,取ddepth=-1/CV_16S/CV_32F/CV_64F;
  4. 若sec.depth()=CV_64F,取ddepth=-1/CV_16S/CV_64F;
  • 第四个参数:int类型的dx,x方向上的差分阶数。
  • 第五个参数:it类型dy,y方向上的差分阶数。
  • 第六个参数:int类型的ksize,默认值是3,卷积核的大小,只能取1,3,5,7.
  • 第七个参数:double类型的scale,计算导数时的可选尺度因子,默认值是1,表示默认情况下是没有应用缩放的。
  • 第八个参数:double类型的delta,表示在结果存入目标图之前可选的delta值,默认值是0.
  • 第九个参数:int类型的borderType,边界模式,默认值是BORDER_DEFALULT。

一般情况下都是用ksize*ksize的内核来计算导数的,但是一种特殊情况是,当ksize=1时,往往会使用3*1或1*3的内核,且这种情况下,并没有进行高斯平滑操作。

代码示例:

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

int main()
{
//    初始化x和y方向的梯度
    Mat grad_x, grad_y;
    Mat abs_grad_x, abs_grad_y;

    Mat srcImage;
    srcImage = imread("/Users/dwz/Desktop/cpp/1.jpg");
    cvtColor(srcImage, srcImage, COLOR_BGR2GRAY);
//    计算x方向的梯度
    Sobel(srcImage, grad_x,CV_16S, 1, 0, 3, 1, 0, BORDER_DEFAULT);
    convertScaleAbs(grad_x, abs_grad_x);

//    计算y方向的梯度
    Sobel(srcImage, grad_y, CV_16S, 0, 1, 3, 1, 0, BORDER_DEFAULT);
    convertScaleAbs(grad_y, abs_grad_y);

//    合并梯度
    Mat dstImage;
    addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, dstImage);
    imwrite("sobel.jpg", dstImage);
}

输入:

输出:

 

### Sobel算子C++中的实现 Sobel算子是一种用于图像处理领域边缘检测的经典算法。它通过计算梯度来突出显示图像中的高空间频率区域,从而识别边界。以下是基于OpenCV库的Sobel算子的一个典型实现方式。 #### 使用OpenCV实现Sobel算子 OpenCV提供了内置函数`cv::Sobel()`,可以直接应用于灰度图像以提取水平或垂直方向上的梯度信息[^3]。下面是一个完整的代码示例: ```cpp #include <opencv2/opencv.hpp> #include <iostream> int main() { // 加载输入图像并转换为灰度图 cv::Mat image = cv::imread("input_image.jpg", cv::IMREAD_GRAYSCALE); if (image.empty()) { std::cerr << "无法加载图像!" << std::endl; return -1; } // 定义输出矩阵 cv::Mat grad_x, grad_y; cv::Mat abs_grad_x, abs_grad_y; // 计算X方向的梯度 cv::Sobel(image, grad_x, CV_16S, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT); convertScaleAbs(grad_x, abs_grad_x); // 计算Y方向的梯度 cv::Sobel(image, grad_y, CV_16S, 0, 1, 3, 1, 0, cv::BORDER_DEFAULT); convertScaleAbs(grad_y, abs_grad_y); // 合并梯度幅值 cv::Mat sobel_result; cv::addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, sobel_result); // 显示结果 cv::imshow("Original Image", image); cv::imshow("Sobel Result", sobel_result); cv::waitKey(0); return 0; } ``` 上述代码实现了以下几个功能: - 将彩色图像转换为灰度图像以便于后续操作。 - 利用`cv::Sobel()`分别计算X轴和Y轴方向上的梯度。 - 对梯度结果取绝对值并通过加权平均得到最终的Sobel运算结果[^3]。 #### 手动实现Sobel算子 如果不想依赖第三方库,则可以手动定义卷积核来进行滤波操作。以下是一段不借助任何外部工具的手写版本: ```cpp #include <vector> #include <cmath> // 卷积操作辅助函数 std::vector<std::vector<double>> convolve(const std::vector<std::vector<int>>& input, const std::vector<std::vector<int>>& kernel) { size_t rows = input.size(); size_t cols = input[0].size(); size_t kRows = kernel.size(); size_t kCols = kernel[0].size(); std::vector<std::vector<double>> result(rows - kRows + 1, std::vector<double>(cols - kCols + 1)); for (size_t i = 0; i <= rows - kRows; ++i) { for (size_t j = 0; j <= cols - kCols; ++j) { double sum = 0.0f; for (size_t ki = 0; ki < kRows; ++ki) { for (size_t kj = 0; kj < kCols; ++kj) { sum += static_cast<double>(kernel[ki][kj]) * input[i + ki][j + kj]; } } result[i][j] = fabs(sum); } } return result; } int main() { // 假设有一个简单的二维数组作为输入数据 std::vector<std::vector<int>> input_data = { /* 输入像素 */ }; // 预先设定好的Sobel X/Y方向模板 std::vector<std::vector<int>> sobel_x = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}}; std::vector<std::vector<int>> sobel_y = {{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}}; auto gradient_x = convolve(input_data, sobel_x); auto gradient_y = convolve(input_data, sobel_y); // 结合两个方向的结果... return 0; } ``` 此方法展示了如何利用标准编程技巧完成基本的信号处理任务——即应用特定大小的窗口扫描整个目标域,并逐位置累加权重乘积累计值[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值