pth文件保存的模型参数对不同GPU环境不适应问题的解决方案研究

对于更改已保存的model weights以适应不同GPU数目的运行环境的(非正式、简略)研究的记录

————————————brief——————————————
结论:可行

转换pth的代码思路简述

  1. load weights of DataParallel(model) run in 2gpu
  2. save weights of model in .pth file.
    —— 实际上到这一步已经可以了。有了这个 pth 文件,基本就OK了。我是因为积重难返,只能再加上后面几步操作来更好地解决自己遇到的问题。
  3. os.environ["CUDA_VISIBLE_DEVICES"] = "0" to change used gpu amount
  4. create new DataParallel(model) run in 1gpu
  5. save the weights of new DataParallel(model)

————————————Details——————————————
应用场景/研究价值/适用的情况
适用于使用模型参数时运行环境内的GPU数目与训练模型时不同,或者运行环境内GPU数目不能确定的情况。
举例
模型使用 DataParallel(model) 在4GPUs环境中运行,并在保存模型参数时保存了 DataParallel(model) 的参数(model.state_dict()),而非单纯model的参数(model.module.state_dict())。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xdhsCS_cv_ml

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值