对于更改已保存的model weights以适应不同GPU数目的运行环境的(非正式、简略)研究的记录
————————————brief——————————————
结论:可行
转换pth的代码思路简述
- load weights of DataParallel(model) run in 2gpu
- save weights of model in .pth file.
—— 实际上到这一步已经可以了。有了这个 pth 文件,基本就OK了。我是因为积重难返,只能再加上后面几步操作来更好地解决自己遇到的问题。 os.environ["CUDA_VISIBLE_DEVICES"] = "0"
to change used gpu amount- create new DataParallel(model) run in 1gpu
- save the weights of new DataParallel(model)
————————————Details——————————————
应用场景/研究价值/适用的情况
适用于使用模型参数时运行环境内的GPU数目与训练模型时不同,或者运行环境内GPU数目不能确定的情况。
举例
模型使用 DataParallel(model) 在4GPUs环境中运行,并在保存模型参数时保存了 DataParallel(model) 的参数(model.state_dict()
),而非单纯model的参数(model.module.state_dict()
)。