MiniFlow -- 9.简单理解反向传播

本文详细介绍了神经网络中Layer类的设计,特别是 backward 方法的实现,用于进行反向传播。在Linear层的反向传播中,展示了如何计算输入、权重和偏置的梯度。通过矩阵运算解析了损失函数关于输入的偏导数计算过程,解释了转置操作在矩阵乘法中的作用,以适应广播机制,确保计算效率。内容涵盖了深度学习中的基本概念和数学原理。
摘要由CSDN通过智能技术生成

我们先来实现sigmoid 类的backward 方法,这里先展示Layer的变化,Input和Linear的backpropagation 的工作方式
我们先看看Layer

class Layer:
    def __init__(self, inbound_layers=[]):
    	# 本层的输入层列表
        self.inbound_layers = inbound_layers
        self.value = None
        self.outbound_layers = []
        # New property! Keys are the inputs to this layer and
        # their values are the partials of this layer with
        # respect to that input.
        self.gradients = {}
        for layer in inbound_layers:
            layer.outbound_layers.append(self)

    def forward():
        raise NotImplementedError

    def backward():
        raise NotImplementedError

可以发现,Layer添加了私有变量 self.gradients ,他是一个字典,如下

self.gradients = {
    inbound_layer_n: partial_loss_with_respect_to_inbound_layer_n,
    ...
}

在反响传播的过程中,会设置 self.gradients 的值。我们会想到 backward()怎么起到作用。网络会利用每一层上的输入的梯度来更变权重和偏移
单个变量的更新公式可以写成
在这里插入图片描述
上面的公式里面w_i和b_i是网络里面一个层中单个权重和偏移,根据这个公式,w_i和b_i都是已知的,那个n样子的变量就是学习率,也是一个全局变量,所以,这里唯一不知道的是每一个变量相对于网络的损失,事实上,这个你会在后向传播的过程中得到

这个一段翻译不出原文意思,直接看原文
Here, w_i and b_i represent a single weight or bias of the weights or biases collection. Looking at these equations, both w_i and b_i are known ahead of time. η is effectively a global variable that you pass into the network. The only unknown is the partial of the network cost with respect to each variable. In fact, this is what you will find during backpropagation.

这里看看他在Linear里面是怎么工作的

class Linear(Layer):
    def __init__(self, inbound_layer, weights, bias):
        Layer.__init__(self, [inbound_layer, weights, bias])

    def forward(self):
        inputs = self.inbound_layers[0].value
        weights = self.inbound_layers[1].value
        bias = self.inbound_layers[2].value
        self.value = np.dot(inputs, weights) + bias

    def backward(self):
        # Initialize a partial for each of the inbound_layers.
        self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_layers}
        # Cycle through the outputs. The gradient will change depending
        # on each output.
        for n in self.outbound_layers:
            # Get the partial of the outbound layer with respect to this layer.
            grad = n.gradients[self]
            # Set the partial of the loss with respect to this layer's inputs.
            self.gradients[self.inbound_layers[0]] += np.dot(grad, self.inbound_layers[1].value.T)
            # Set the partial of the loss with respect to this layer's weights.
            self.gradients[self.inbound_layers[1]] += np.dot(self.inbound_layers[0].value.T, grad)
            # Set the partial of the loss with respect to this layer's bias.
            self.gradients[self.inbound_layers[2]] += np.sum(grad, axis=0, keepdims=False)

让我们写下数学版本的代码的解决方式,然后温习一下
在这里插入图片描述

在这里插入图片描述
是不是觉得这里的T觉得很奇怪,在公式2中,X和W遵循行列式的规则,并遵循行列式的乘法规则,为什么到了下面的公式里面就出现了转置呢,我的理解是在实际是算过程中使用矩阵的广播计算更为方便,使用广播,让X和W拥有相同的列数,然后让X对W进行广播,结果为X的第一行和W的第一行相乘,作为结果的第一行第一列,用X的第一行和W的第二行相乘作为第一行第二列,一次类推,结果形状为,X的行数为结果的行数,WT的行(hang)数为结果的列数

我们将 Linear方法写成标量的表示方法
在这里插入图片描述

  • X => mxn
  • W => nxk
  • z => mxk
  • i =>m; j =>n; l=>k
    m是X的批次,n是X的特征数,k是输出特征数量
    上面的公式是X的行i和W的列j的点乘(dot product)
    让我们看看Z关于X的偏导数计算,下面是标量计算
    在这里插入图片描述
    然后再来看看矩阵的计算
    在这里插入图片描述
    然后是通过矩阵计算损失C关于X的偏导数,
    在这里插入图片描述
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值