【论文笔记】ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine ...

原文链接icon-default.png?t=N7T8https://arxiv.org/pdf/1806.01246      

摘要

        本文研究了机器学习模型中的成员推理攻击,即攻击者试图确定数据点是否属于模型的训练数据。文章放宽了先前研究中的假设,展示了更广泛的应用场景和更低的攻击成本。通过使用单一影子模型、数据无关攻击和无需训练的攻击方法,文章证明了成员推理攻击的严重性。此外,文章提出了两种防御机制,即 dropout 和模型堆叠,以减轻成员推理攻击的风险。

工作内容

        针对模型无关的成员推理攻击 (攻击者 1):第一个攻击者,使用单个影子模型和攻击模型进行成员推理攻击。

        针对数据无关的成员推理攻击 (攻击者 2):第二个攻击者,使用来自不同分布的数据集训练影子模型,并提出了数据转移攻击方法,该方法比 Shokri 等人 [38] 的合成数据生成方法更有效。

         无需训练的模型和数据无关的成员推理攻击 (攻击者 3):第三个攻击者,她使用目标模型的后验概率进行成员推理攻击,无需构建影子模型。

        防御: 提出了两种防御机制,即 dropout 和模型堆叠,以减轻成员推理攻击的风险。

实验细节

攻击

        三种攻击者逐步放宽了成员推理攻击的假设,展示了其广泛的应用场景和严重性。攻击者 1 放松了影子模型结构的假设,攻击者 2 放松了数据分布的假设,攻击者 3 则进一步放松了攻击复杂度的假设。这些结果表明,即使攻击者没有大量数据和模型知识,仍然可以对机器学习模型进行有效的成员推理攻击。

攻击者1:模型无关攻击

  • 目标: 确定数据点是否属于模型的训练数据。
  • 假设: 攻击者拥有来自与目标模型训练数据相同分布的数据集
  • 方法: 使用单个影子模型和攻击模型进行成员推理攻击。
  • 特点
    • 使用单个影子模型,降低了攻击成本。
    • 放松了影子模型结构必须与目标模型相同的假设。
    • 提出了“结合攻击”,无需知道目标模型使用的分类器类型。
    • 在多个数据集上取得了与使用多个影子模型相似的攻击性能。

攻击者2:数据无关攻击

  • 目标: 确定数据点是否属于模型的训练数据。
  • 假设: 攻击者没有来自与目标模型训练数据相同分布的数据集
  • 方法: 使用来自不同分布的数据集训练影子模型,并进行数据转移攻击。
  • 特点
    • 无需查询目标模型生成合成数据,降低了攻击成本和被检测的风险。
    • 数据转移攻击在不同领域的数据集之间也有效。
    • 攻击性能在某些情况下甚至优于攻击者 1。

攻击者3:无需训练的模型和数据无关攻击

  • 目标: 确定数据点是否属于模型的训练数据。
  • 假设: 攻击者无需构建影子模型,且攻击无需训练过程
  • 方法: 使用目标模型后验概率的统计指标(如最大值和熵)进行成员推理。
  • 特点
    • 攻击者只需使用目标模型进行查询,无需训练任何模型。
    • 攻击性能虽然略低于前两种攻击者,但仍然有效。
    • 进一步证明了成员推理攻击的严重性。

防御

dropout

  • 目标: 降低机器学习模型的过拟合程度,从而提高其对成员推理攻击的鲁棒性。
  • 方法: 在每个训练迭代中,随机删除全连接神经网络模型中一定比例的边。
  • 实现
    • 选择合适的 dropout 比率: 通常选择 0.5 作为默认值,但可以根据具体情况进行调整。
    • 应用于输入层和隐藏层: 在模型的每个层都应用 dropout,以更有效地防止过拟合。
    • 评估效果: 通过比较应用 dropout 之前和之后的攻击性能,评估其有效性。结果显示,dropout 可以显著降低攻击性能,同时保持目标模型的预测精度。

正则化技术

  • 目标: 提高机器学习模型的泛化能力,从而降低其对成员推理攻击的敏感性。
  • 方法: 将多个机器学习模型组织成层次结构,每个模型训练在不同的数据子集上。
  • 实现
    • 选择不同的机器学习模型: 通常选择多层感知器、随机森林和逻辑回归作为模型堆叠的组成部分。
    • 数据分割: 将数据集分割成多个互斥的子集,每个子集用于训练一个模型。
    • 模型组合: 使用第一个模型的输出作为第二个模型的输入,第二个模型的输出作为第三个模型的输入,最终得到模型的预测结果。
    • 评估效果: 通过比较应用模型堆叠之前和之后的攻击性能,评估其有效性。结果显示,模型堆叠可以显著降低攻击性能,但可能会对目标模型的预测精度产生负面影响。

  • 23
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习中的成员推理攻击指的是攻击者可以通过观察机器学习模型的输出,来推断训练数据中是否包含了特定的样本。这种攻击技术可以通过观察模型的输出统计信息,如分类概率或回归值,来判断模型对于某个特定样本的预测结果。成员推理攻击可能会对数据隐私造成威胁,尤其是当模型训练在敏感数据集上时。 针对成员推理攻击,也有一些防御方法可以采取。首先,可以对模型输出进行扰动处理,使得攻击者无法准确地推断出是否包含某个样本。这可以通过在模型输出中添加随机噪声或限制预测结果的精确度来实现。 其次,可以采用集成学习的方法,即使用多个模型进行预测,并对不同模型的输出进行统计,以减少攻击者的推断能力。通过使用不同的模型和数据划分,可以降低攻击者通过模型输出的统计信息来推测训练数据的可能性。 另外,数据隐私保护方法也可以用于防御成员推理攻击。例如,可以使用差分隐私技术,在训练数据中引入一定的随机噪声,以保护个体数据的隐私。这样可以防止攻击者通过观察模型的输出来进行有效的成员推理。 综上所述,成员推理攻击是机器学习中的一种隐私威胁,但通过添加扰动、集成学习和数据隐私保护等方法,我们可以减轻这种攻击带来的风险。然而,防御成员推理攻击仍然是一个开放的研究领域,需要进一步的研究和改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值