可靠性数据分析教程总结

常见的可靠性指标及其概率解释失效分布和平均寿命剩余寿命具有年龄t的产品从t开始继续使用下去直到失效为止所经历的时间,记为ξtξt\xi_tFt(x)=P(ξt⩽x)=P(ξ⩽t+x|ξ>t)=F(t+x)−F(t)1−F(x)Ft(x)=P(ξt⩽x)=P(ξ⩽t+x|ξ>t)=F(t+x)−F(t)1−F(x)\begin{aligned}F_t(x)...
摘要由CSDN通过智能技术生成

常见的可靠性指标及其概率解释

失效分布和平均寿命

剩余寿命

具有年龄t的产品从t开始继续使用下去直到失效为止所经历的时间,记为 ξt ξ t

Ft(x)=P(ξtx)=P(ξt+x|ξ>t)=F(t+x)F(t)1F(x) F t ( x ) = P ( ξ t ⩽ x ) = P ( ξ ⩽ t + x | ξ > t ) = F ( t + x ) − F ( t ) 1 − F ( x )

平均寿命

MTTF或MTBF

E(ξ)=0tf(t)dt E ( ξ ) = ∫ 0 ∞ t f ( t ) d t

可靠度和可靠寿命

要求 R(t)=R R ( t ) = R ,求相应的时间t,这个时间称为可靠寿命 tR t R

  • R=0.5 R = 0.5 t0.5 t 0.5 称为中位寿命
  • R=e1 R = e − 1 te1 t e − 1 称为特征寿命

数据的初步整理分析

直方图

分为频数(r)、频率(f)、累计频率(F)、失效率(λ)直方图

组数: k=1+3.3lg(n) k = 1 + 3.3 l g ( n )

经验分布函数

Fn(t)=0in1,t<t1,tit<ti+1,ttn F n ( t ) = { 0 , t < t 1 i n , t i ⩽ t < t i + 1 1 , t ⩾ t n

完全样本

样本容量较大时: Fn(ti)=in F n ( t i ) = i n

样本容量较小( n20 n ⩽ 20 )时:

  • 海森公式: Fn(ti)=i0.5n F n ( t i ) = i − 0.5 n
  • 数学期望公式: Fn(ti)=in+1 F n ( t i ) = i n + 1
  • 近似中位秩公式: Fn(ti)=i0.3n+0.4 F n ( t i ) = i − 0.3 n + 0.4

i=n=1 i = n = 1 时它们都等于0.5

删失样本

用乘积限估计:

R^(t)=1ji=1(nini+1)δi0,t<t1,tjt<tj+1,ttn R ^ ( t ) = { 1 , t < t 1 ∏ i = 1 j ( n − i n − i + 1 ) δ i , t j ⩽ t < t j + 1 0 , t ⩾ t n

随机截尾寿命试验的可靠度函数计算

残存比率法

残存比率法是由概率乘法公式得来的,因此它适用于样本量较大的情况

定义产品在时间区间 (ti1,ti) ( t i − 1 , t i ) 内的残存概率 S(ti) S ( t i ) ,它是一个条件概率。表示在 ti1 t i − 1 时刻能完好工作的产品继续工作至 ti t i 时刻尚能完好工作的概率

S(ti)=P(ξ>ti|ξ>ti1)=R(ti)R(ti1) S ( t i ) = P ( ξ > t i | ξ > t i − 1 ) = R ( t i ) R ( t i − 1 )

产品在某时刻ti的可靠度

R(ti)=j=1iS(tj) R ( t i ) = ∏ j = 1 i S ( t j )

S(ti) S ( t i ) 可以由样本估计

平均秩次法

平均秩次法可用于样本量较小的情况,它采用了中位秩公式

算出平均秩次i,带入中位秩公式: Fn(tk)=i0.3n+0.4 F n ( t k ) = i − 0.3 n + 0.4

例如:如果F2秩次为2,它前面和后面的排列总共有24种;如果F2秩次为3,它前面和后面的排列总共有6种,F2的平均秩次由2、3的种类加权平均得 Fn(t2)=63+2426+24=2.2 F n ( t 2 ) = 6 ∗ 3 + 24 ∗ 2 6 + 24 = 2.2

样本量多时用增量公式: ΔAk=AkAk1=n+1Ak1ni+2 Δ A k = A k − A k − 1 = n + 1 − A k − 1 n − i + 2

顺序统计量的应用

第k个顺序统计量的分布

设总体 ξ ξ 的分布函数为 F(t) F ( t ) ,密度函数为 f(t) f ( t ) ,则容量为n的子样,其第k个顺序统计量 T(k) T ( k ) 的分布密度函数为:

fT(k)(t)=nCk1n1[F(t)]k1[1F(t)]nkf(t) f T ( k ) ( t ) = n C n − 1 k − 1 [ F ( t ) ] k − 1 [ 1 − F ( t ) ] n − k f ( t )

顺序统计量的联合分布、经验分布函数的分布

各种截尾样本的联合分布

fT1,T2,...,Tr(t1,t2,...,tr)= f T 1 , T 2 , . . . , T r ( t 1 , t 2 , . . . , t r ) =

  • 完全寿命试验: n!ni=1f(ti) n ! ∏ i = 1 n f ( t i )
  • 定数截尾试验: n!(nr)![ri=1f(ti)][1F(tr)]nr n ! ( n − r ) ! [ ∏ i = 1 r f ( t i ) ] [ 1 − F ( t r ) ] n − r (失效的时间为 ti t i ,顺序已定;未失效的为 tr t r ,(n - r)个排列)
  • 定时截尾试验: n!(nr)![ri=1f(ti)][1F(t0)]nr n ! ( n − r ) ! [ ∏ i = 1 r f ( t i ) ] [ 1 − F ( t 0 ) ] n − r (把 tr t r 换为 t0 t 0
  • 随机截尾试验: Cri=1f(ti)ki=1[1F(τi)] C ∏ i = 1 r f ( t i ) ∏ i = 1 k [ 1 − F ( τ i ) ] (C不能用一个统一的表达式表示,此处暂以C代之,因为在实际应用中,其大小无影响)

常见失效分布

二项分布

n次伯努利实验成功次数

  • P(X=x)=Cxnpx(1p)nx P ( X = x ) = C n x p x ( 1 − p ) n − x
  • E(X)=np E ( X ) = n p
  • D(X)=np(1p) D ( X ) = n p ( 1 − p )

当n很大,p很小时近似于泊松分布, λ=np λ = n p

二项分布的和服从贝塔分布

负二项分布

预定成功次数s,求试验次数

  • P(X=x)=Cs1x1ps(1p)xs P ( X = x ) = C x − 1 s − 1 p s ( 1 − p ) x − s (最后一次为成功,前面的抽 s1 s − 1 次成功)
  • E(X)=sp E ( X ) = s p
  • D(X)=s(1p)p2 D ( X ) = s ( 1 − p ) p 2

超几何分布

N个产品有D个次品,抽n个,求次品数

  • P(X=x)=CxDCnxNDCnN P ( X = x ) = C D x C N − D n − x C N n
  • E(X)=nDN E ( X ) = n D N
  • D(X)=NnN1nDNNDN D ( X ) = N − n N − 1 n D N N − D N

当N很大,n很小时近似于二项分布, p=DN p = D N

泊松分布

一段时间内事件发生的次数

  • P(X=x)=λxx!eλ P ( X = x ) = λ x x ! e − λ
  • E(X)=λ E ( X ) = λ
  • D(X)=λ D ( X ) = λ

贝塔分布

成功s次,失败f次,成功概率的分布

  • f(x)
  • 4
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值